Prospect or Company	
Facility Location (City, State):	
Cooling System Name:	

Makeup Water Quality Information:

Makeup Source City, Well, Recycled, other:			
Total Hardness		Silica	
TDS		(or) *Conductivity	
Turbidity or SS		Total Alkalinity	
Fe, Mn, other pH			

Cooling Tower Evaporation Loads, Operation, Water Costs:

Cooling Tower Evaporation Loads, Operation, Water Costs:
Design Evaporation Capacity, GPM
(or) Design Evaporation Capacity, Tons
Tons Peak Evaporation Load, GPM
or) Peak Evaporation load, Tons
Average Evaporation Load, GPM
(or) Average Evaporation Load, Tons
Tons Annual tower makeup (gallons)
Annual tower blowdown, Gal.
Electrical Cost, \$/kWh
Current Water Source Cost / 1000 Gal.
Sewer Discharge Cost / 1000 Gal.
Lower cost water source Cost / 1000 Gal.
Days/Year Tower Operation
Hours/Day Tower Operation
Other comments:

Current Tower Operation Control / Treatment:

*Tower Concentrations (COC)	
(or) *Blowdown Conductivity Max Control Limit `	
Program Cost, Annual (All towers included)	
Is acid / pH Control Used?	

Types of Cooling Equipment: (Check all that apply)

	Υ	N	How many		Υ	N	How many
Crossflow Tower				Shell & Tube			
Counter-Flow Tower				Plate & Frame			
Evaporative Condenser				Heat Exchanger Only			
Fluid Cooler				Chiller Compressor			
Other (Describe)							

Tower Equipment Manufacturer:

	How Many		How Many		How Many
Marley		Evapco		BAC	
Other (Manufact. Name and How Many):					

Tower Equipment & Operational Status:	Efficiency		ency	Other	
	Υ	Ν	<0.003%	<0.001%	%Efficiency
Drift Eliminators					
Backflow Preventers on Pump Discharge					
Cooling Tower Basin Leaking Seams					
Side-Stream or Sweep Sys. Return to CT					
Side-Stream or Sweep SysDescribe					
Cooling Tower Construction (SS, Galv., Comp.)					
Cooling Tower Basin Vol. (gallons)					
or Basin Dimensions (LxWxD)					

Plate & Frame Heat Exchanger Information:

Manufacturer	Model No.
BTU/Hr. Capacity	Design Cold Flow GPM
Average Cold Flow GPM	Lowest Cod Flow GPM
Freq. of Cleaning by Removing Plates:	Freq. by Chemical Flush:
Months Operated Each Yr.	
Inlet / Outlet Pressure (When Clean) PSI:	
Inlet / Outlet Pressure (Current Operation) PSI:	

Potential Issues / Problem History: (Check those applicable)

Lim	nitations / restrictions for water supply or discharge.
High	sh / increasing water and/or discharge water costs.
Wat	ater quality issues due to high hardness, silica, TDS
Wa	ant to use recycled / recovered wastewater in cooling tower.
Cor	rrosion issues with cooling water system metals.
Scal	ale formation issues and heat transfer efficiency losses.
Biol	ological fouling issues / heat transfer loss / pathogen issues.
Des	sire to eliminate chemical handling and storage.
Plat	te & Frame Heat Exchanger Fouling.
THE	ERMAL STORAGE INSTALLATION

Notes: 1 The fastest way to restore heat transfer efficiency for scaled equipment is chemical or mechanical cleaning. Cleaning also averts chip scale blockage of pump screens.

2 Circulating soft water through the system will slowly clean up the system. However, leaving scale in place delays heat transfer restoration, and scale chips break off and migrate to tower basins and often block pump intake screens. It also delays reaching High COC performance benefits as hardness dissolution requires blowdown.