

Chiller Retrofit Energy Savings

Base Case Energy Use = $T_e(tons) \ge E_e(kW/ton) \ge LF \ge Hrs$

Where

 T_e = existing chiller cooling tons E_e = existing chiller efficiency in kW/ton y = age of chiller LF = load factor of chillers Hrs = annual hours of operation

New Chiller Energy Use = $T_n(tons) \ge E_n(kW/ton) \ge LF \ge Hrs$

Where

 T_n = new chiller cooling tons E_n = new chiller efficiency in kW/ton

Energy Savings = Base Case Energy Use – New Chiller Energy Use

Assume the existing chiller is a 150-ton water-cooled centrifugal chiller that is 12 years old. The original efficiency of 0.85 kW/ton. The load factor is 0.75. Operating hours are 3000 hours/year.

The new chiller is an improved efficiency 150-ton water-cooled centrifugal chiller with efficiency of 0.56 kW/ton. This is more efficient than the federal standard at the time of installation of the new unit, which is 0.7 kW/ton.

=

=

A chiller EUL is 20 years. Calculating simple payback is a matter of determining energy savings and annual cost savings and then multiplying by the 20 year EUL.

Existing Chiller

((150 x 0.85) x (0.75 x 3,000) 127.5 x 2,250 286,875 kWh/yr

New Chiller (150 x 0.56) x (0.75 x 3,000) = 84.0 x 2,250 = 189,000 kWh/yr

Energy savings = 286,875 – 189,000 = 97,875 kWh/yr Simple Payback = 97,875 kWh/yr @ \$.085/kWh = \$8,319.00/yr Chiller Life Time Savings 20 Yr = \$8,319 x 20 = \$166,380 or 1,957,500 kWh Depending on policy decisions, one way to determine lifetime savings is to calculate the savings between the 0.85 kW/ton and 0.56 kW/ton units for 8 years (8 years of life are remaining in the unit that is retiring early). For the remaining 12 years of the new chiller, the savings is calculated as the difference between the federal standard and the new unit.

Existing Cl	niller with 8 EUL		
(150 x 0.85)) x (0.75 x 3,000)	=	
127.5	x 2,250	=	
	286.875 kWh/yr.		
New Chille	r		
(150 - 0.56)) x (0.75 x 3,000)	=	
84.0	x 2,250	=	
	189,000 kWh/yr		
Energy Savi	ings = 286,875 - 189,000	= 97,875 kWh/yr	
Energy sav Cost Saving	ings years 1-8 = 286.175 – gs over 8 years @ \$0.085	189,000 = 97,875 kWh/yr x 8	= 783,000 kWhr = \$66,555.00
Federal Std	l Chiller		
(150 - 0.7)	x (0.75 x 3,000)	=	
105	x 2,250	=	
	236,250 kWh/yr		
New Chille	r		
(150 - 0.56)) x (0.75 x 3,000)	=	
84.0	x 2,250	=	
	189,000 kWh/yr		
Energy Savi	ings = 236,250 - 189,000	= 47,250 kWh/yr	
Energy Sav Cost Saving	vings years 9-20 = 236,250 gs over 12 years @ \$0.085	-189,000 = 47,250 kWh/yr x 12	= 567,000 kWh = \$48,195.00
SUMMAR	Y SAVINGS using EUL/R	UL	
Energy Savi	ings over 8 years EUL		=783,000 kWh
Cost Saving	s over 8 years @ \$0.085		= \$66,555.00
Energy Savi	ings over RUL of 12 years		= 567,000 kWh
Cost Saving	s over RUL of 12 years		= \$48,195.00
Total Energ	y Savings attributable to Ne	ew Chiller	
Over 20 yr l	Life 783,000 kWh + 567,00	0 kWh	= 1,350,000 kWh
Energy Savi	ings over Life of 20 years		= \$114,750.00

Energy Costs ignore any Escalation in Rates

