OPERATIONAL UPDATE ON INNOVATIVE COOLING TOWER PRETREATMENT TECHNOLOGY

Presented By: Joel E. Bowdan III, P.E.

PRESENTATION OUTLINE:

Subject Introduction

Amylin Project Background

Cooling Tower Basics

Typical RW CT Implementation Challenges

Alternate Pretreatment Technology

Technology Benefits to RW Use

AMYLIN PHARMACEUTICALS BACKGROUND

- Located in SD Golden Triangle
- Specializing in diabetes research and medicines production
- 104,000 ft² (9,662 m²) office/ research building, reflecting pond, and irrigation areas
- Prior peak potable water makeup 25,100 gpd (95 m³/d) for CT; 9,360 gpd (35.4 m³/d) pond and irrigation
- Implemented RW retrofit at CT with Pretreatment Technology in 2012

AMYLIN PHARMACEUTICALS BACKGROUND

• Switch from potable to recycled water use

 Focus on feature pond, irrigation & cooling tower

Project

Goals

 Reduce overall water use (implement conservation)

Reduce overall O&M costs.

COOLING TOWER BASICS

RW IMPLEMENTATION CHALLENGES:

- Water quality typically poorer than potable (TDS, PO4, nutrients, etc.)
- Maximum COC of RW < PW</p>
- Increase in scaling potential
- Increase in corrosion potential
- Potential increase in bacteriological activity
- Condition of existing system
- Regulatory/permitting/inspection barriers & concerns

RW CT IMPLEMENTATION CHALLENGES

Constituents of Concern	Unit	City of SD RW Quality	Saturation Limits/Issues in Cooling Water
Total Dissolved Solids (TDS)	mg/L	914	Increases ionic strength & corrosion potential in cooling water
Calcium Hardness	mg/L as CaCO₃	162	Calcium carbonate scaling issues
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	Max. 500,000 mg/L without scale inhibitor
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	Max. 35,000 mg/L without scale inhibitor
Ortho-Phosphate	mg/L as PO₄	5.8	Calcium phosphate scaling
Ammonia	mg/L as N	0.3	Copper alloy corrosion issues
Chloride	mg/L	239	Corrosion issues
Total Org. Carbon (TOC)	mg/L	8.6	Fouling and biological issues

RW CT IMPLEMENTATION CHALLENGES

Constituents of Concern	Unit	City of SD RW Quality	Cooling Water Limits w/ Chemical Feed	Alternate Technology?
Total Dissolved Solids (TDS)	mg/L	914	< 5,000	
Calcium Hardness	mg/L as CaCO₃	162	<1,200	
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	< 1,000,000	
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	75,000	
Ortho-Phosphate	mg/L as PO ₄	5.8	4 - 9	
Ammonia	mg/L as N	0.3	< 1.5	
Chloride	mg/L	239	< 1,500	
Total Org. Carbon (TOC)	mg/L	8.6	Fouling/Biological	

PRETREATMENT TECHNOLOGY

- Patented Alternative Pretreatment Technology (WCTI)
 - Media filtration to lower TSS and prevent IX resin fouling
 - ✓ Softening to remove Ca and Mg
 - Operation at high COC (i.e., high TDS, pH alkalinity, phosphate and silica)
 - ✓ Non-common (diverse) ion effect
 - Scale & corrosion prevention
 - ✓ Biostatic

ALTERNATE PRETREATMENT TECHNOLOGY

Constituents of Concern	Unit	City of SD RW Quality	Cooling Water Limits w/ Chemical Feed	Alt. Pretreat. Technology
Total Dissolved Solids (TDS)	mg/L	914	< 5,000	< 100,000
Calcium Hardness	mg/L as CaCO₃	162	<1,200	< 30 *
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	< 1,000,000	N/A
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	75,000	N/A
Ortho-Phosphate	mg/L as PO₄	5.8	4 - 9	N/A
Ammonia	mg/L as N	0.3	< 1.5	< 60,000
Chloride	mg/L	239	< 1,500	< 60,000
Total Org. Carbon (TOC)	mg/L	8.6	Fouling/Biological	Biostatic

AMYLIN IMPLEMENTATION COOLING TOWER INFORMATION

Parameter	Value
Cooling Capacity	500 Tons
Delta T	10 Deg. F
Recirculation Rate	1500 gpm
Peak Evaporation Rate	12 gpm
Tower Materials	Galvanized with S.S Basin

AMYLIN IMPLEMENTATION

Pretreatment System Installed

OPERATIONAL UPDATE

OPERATIONAL UPDATE

AMYLIN PHARMACEUTICALS WCTI RAMP COC, HARDNESS AND PH

OPERATIONAL UPDATE - INSPECTION

- Chiller inspection performed Jan. 2013
 - Electromagnetic induction (eddy-current) testing
 - Copper tube with epoxy-coated steel plate end
 - No tube damage, minor pitting noted
 - ✓ No or very minimal scale
 - Operator noted best inspection of chiller since installation.
- Cooling Tower Issues
 - White rust (i.e. zinc-carbonate) noted on galvanized upper.
 - ✓ No scale, no corrosion.

ECONOMIC ANALYSIS (ORIGINAL)

Description	Previous Chemical Treatment	Revised Chemical Treatment	Implemented WCTI Technology
Operational Data			
Make-up Water Source	100% Potable	100% Potable	100% RW
Annual Average Evaporation, gpd	17,280	17,280	17,280
Annual Average Blow-Down, gpd	7,855	4,320	353
Annual Average Make-Up Water, gpd	25,135	21,600	17,633
Cycle of Concentration	3.2	5.0	50
Annual O&M Cost Comparison			
Annual Make-up Water Cost	\$44,650	\$38,370	\$6,880
Annual Blow-Down Cost	\$28,750	\$15,810	\$1,290
Annual Chemical Cost	\$8,000	\$10,000	\$0
Annual Salt & Patent Program Cost	\$0	\$0	\$11,900
Total Annual O&M Costs	\$81,400	\$64,180	\$20,070
Annual Cost Savings "Green" Tech	\$61,330	\$44,110	\$0
Total WCTI Capital Cost			\$21,350

ECONOMIC ANALYSIS (2012-2013)

Description	Previous Chemical	Revised Chemical	Implemented WCTI
	Treatment	Treatment	Technology
Operational Data			
Make-up Water Source	100% Potable	100% Potable	100% RW
Annual Average Evaporation, gpd	4,433	4,433	4,433
Annual Average Blow-Down, gpd	2,015	1,108	112
Annual Average Make-Up Water, gpd	6,448	5,541	4,545
Cycle of Concentration	3.2	5	40.7
Annual O&M Cost Comparison			
Annual Make-up Water Cost	\$11,799	\$10,140	\$1,774
Annual Blow-Down Cost	\$4,916	\$2,704	\$272
Annual Chemical Cost (Est.)	\$2,052	\$2,565	\$0
Annual Salt & Patent Program Cost	\$0	\$0	\$3,053
Total Annual O&M Costs	\$18,768	\$15,409	\$5,099
Annual Cost Savings	\$13,668	\$10,310	\$0
Total WCTI Capital Cost			\$21,350

IMPLEMENTATION CHALLENGES - ALTERNATE TECHNOLOGY -

Monitor operation on daily basis

Verify proper functioning of existing open loop cooling system

Consider removal of any existing scaling

Allow for period of adjustment

Requires regular monitoring same as chemical treatment

Consider automatic blowdown control

OVERALL IMPLEMENTATION BENEFITS

- Potential for greater adoption of RW use in cooling towers
- Alternate technology adapts to challenging RW water quality
- Reduced water purchase cost (client benefit) and consumption (agency benefit)
- O&M costs minimized (typical ROI of 2 years or less)
- ✓ Qualifies for LEED credit

CONTACT INFORMATION

Joel E. Bowdan III, P.E. jbowdan@rbf.com (858) 614-5035 Alex Rahimian-Pour alexrp@rbf.com (858) 810-1462

QUESTIONS & ANSWERS

