


EFFECTIVE USE OF RECYCLED WATER IN COOLING TOWERS WITH NEW GREEN TECHNOLOGY

Joe Walters West Basin Municipal Water District, Carson CA

Dan Duke Water Conservation Technology International, Temecula, CA

Cooling Tower Issues

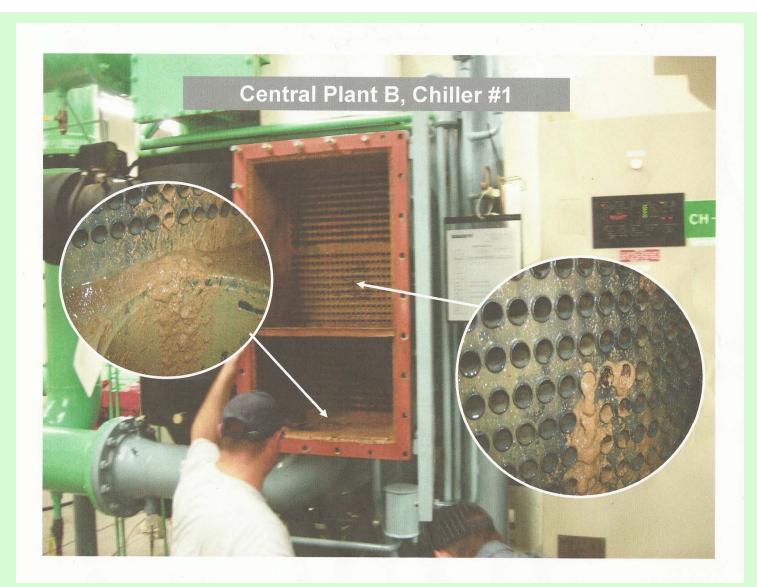
Tower Operator Goals

- Reduce water & sewer costs
- Eliminate efficiency losses
- Forgiving / tolerant control
- Insured water supply
- No recycled water problems
- LEED credits

Tertiary Disinfected in Cooling Towers

Traditional Treatment requires significant chemical additives to:

- Inhibit corrosion
- Inhibit bio-growth



Tertiary Disinfected in Cooling Towers

Traditional Treatment results in:

- Lower cycles of concentration (about 1 COC) / higher water costs
- Reduced efficiency of cooling towers
- Higher chemical costs
- Higher cleaning costs

Cooling towers become incubators for biogrowth. WBMWD and customer are researching traditional and non-traditional methods of addressing biogrowth.

WBMWD Customer Service

- Become part of their team.
- Engage expert consulting firm to study problem.
- Develop analysis and action plan.
- Partner on solution.
- Continue follow-up.

Tertiary Disinfected in Cooling Towers

The solution to these issues came from another customer using a non-traditional treatment from:

Water Conservation Technology International (WCTI)

New Green Technology to Sustain Water and Energy Resources

Natural Green Chemistry (NGC) R&D Focus – patented technologies Pilot Studies & Field Proven over 5 years Licensed for professional application

US 6,929,749 / Scale Inhibition US 6,949,193 / Scale Inhibition US 6,998,092 / Corrosion Inhibition US 7,122,148 / Corrosion Inhibition US 7,517,493 / Corrosion Inhibition EP 1704123 / Scale & Corrosion Inhibition

Why Recycled Water is a Challenge for use in Cooling Towers

- Ammonia attacks copper / alloys
- Increased bio-fouling from nutrients
- More minerals, increased scale and corrosion
- Increased water wastage and sewer loading
- Increased chemical treatment costs (2-4X)

Energy Efficiency Losses From Low Solubility Mineral Deposits

Hidden Cost of Efficiency Loss (Energy Cost with Scale or Fouling)

	CONDENSER SCALE / BIO-FOULED THICKNESS & COST / YR				
	LIGHT MODERATE HEAVY				
A/C	.001 FF	.003 FF	.005 FF		
Tons	(.012'')	(.036'')	(.060'')		
500	\$13,200	\$39,068	\$65,000		
1000	\$25,932	\$78,136	\$129,532		
2000	\$51,864	\$156,272	\$259,064		

Assumptions: (1) Operating 12 hr/day, 240 days/yr (2) One ton A/C uses 0.9 KWH (3) Power costs \$0.20/KWH

Natural Green Chemistry Meets Customer Goals

- Natural bio-static water no biocide use
- Zero tower blowdown, 20-40% water savings
- Highly tolerant to upsets / self correcting
- Tolerates water quality and load variations
- Reduces treatment costs 50-75%
- Prevent and <u>remove</u> scale deposits

69% less <u>Water</u> - 25% less <u>Energy</u>

One year on zero bleed, 100 mg/L silica in makeup!

PERFORMANCE MEASUREMENTS	CHEMICAL TREATMENT	NGC
Tower Water Wasted	70%	1%
Fill / Exchanger	Visible Scale	Scale Dissolved
Avg. Planktonic Cts	10 ⁴ – 10 ⁵ CFU/ml	10 ⁰ CFU/ml
Avg. Sessile Cts	10 ⁶ CFU/cm ²	10 ¹ CFU/cm ²
Avg. Biocide Use	2.0 – 2.5 gpd	None
Exchanger Amp Load	34	25

How Natural Chemistry Works

 The major surface water minerals are Ca, Mg, Na, Cl, SO4, alkalinity and silica

- Softening exchanges Na for Ca/Mg and eliminates the low solubility salts that scale
- Evaporation of water saturates silica, TDS, and alkalinity (pH) which catalyze polymerization of silica to amorphous silicates
- This form of silica is an outstanding corrosion inhibitor, and does not form deposits

Natural Biostatic Water

• Elevated pH and TDS are naturally biostatic to bacteria, spores and viruses

- Proteins & enzymes are denatured by high TDS
- Hydrolysis of peptide chains occurs as water pH is increased (used in wastewater treatment)
- Natural pH/TDS increase as water is evaporated and concentrates minerals with zero tower discharge
- Mitigates pathogenic bio-films and organisms (Legionella), even when static (no flow)

Recycled Water and Natural Green Chemistry

- Replaces fresh water consumption
- Reduces embodied water-energy consumption (\$272 /AF in CA)
- Bio-static water ends "bio-bloom fouling"
- Mitigates ammonia-copper corrosion

Recycled Water and Natural Green Process

- Non chemical program uses natural silica and minerals in water
- Customer assured water supply
- Customer controls high efficiency
 - filtering and softening
- Green (LEED) credits

High Efficiency design-build systems further reduce water and waste

- HES / HEF high efficiency softeners / filters
- Low salt design (4#/CF) cuts salt use 30-50%
- Allows 98% evaporative use (over 100 COC)
- \$0.12 /1000 gallons vs \$3.00-\$12.00 /1000 bleed cost
- Tower waste reduced 20-40% (zero bleed)
- Economic (1-2% volume) TDS separation

ROI – Typical S. CA Tower

Tons Tower Capacity	Peak Flow GPM	Installed \$ Cost Estimate	MGY Water Saved *	\$ /yr Water Cost Saved*	ROI Months
250	7	6000	1.2	7200	10
500	13	12000	2.4	14000	10
1000	25	18000	4.8	28800	8
1500	38	24000	7.8	46800	6
2000	50	30000	10	61200	6
3000	75	35000	15	90000	5
4000	100	50000	20	122400	5
5000	125	60000	24	144000	5
10000	250	175000**	49	288000	7
20000	500	300000**	99	576000	6

*60% of design as average load ** Includes bulk salt handling system

Recycled Case History

Auto HQ / Recycled Water

- Five cooling towers, chillers/absorber, plate & frame exchanger
- HEF HES Pre-treat System
- Recycled Water Quality
 - Ammonia = 38 mg/L
 - Turbidity = 3 ntu
- LEED Certification
- Saved 40 Million Gal/yr potable water
- Averted 15 Million Gal/yr to sewer

Ammonia Strip by Natural Process

In a waste stream, ammonium ions exist in equilibrium with ammonia.

 $NH4^+ OH^- = NH3 + H2O$

- Below pH 7, the ammonia is soluble ammonium ions.
- Above pH 12, the ammonia is a dissolved gas.
- Between pH 7 12, both ammonium ions and dissolved gas
- Dissolved gas ratio increases with pH and temperature.
- Elevated pH and temperature remove ammonia from the water as the gas when water is scrubbed over a tower.
- Incremental removal as water added, odor is dissipated.

Recycled Study & Lessons Learned

- Ammonia was aggressive to brass makeup valves (untreated, failed in less than 12 months, replaced with stainless).
- Don't use copper pipe for restrooms!!
- Azoles highly effective for copper / ammonia corrosion mitigation (NGC, patent pending).
- Biostatic tower chemistry mitigates ammonia, phosphate, bio-nutrient effects (and no odor).

Coupon Weight Loss Results

Copper coupon, exposed 99 days, 0.16 mpy corrosion rate (under mount bias).

Mild steel coupon exposed 99 days with 0.426 mpy corrosion rate (under mount bias).

Copper Corrosion (CMAS study) Chemical / ZBD Potable / ZBD Recycled

- Independent PHD real time on line study
- NGC treated water a very minor increase from 0.04 to 0.09 mpy (potable to recycled)
- Well below acceptable copper standards
- NGC corrosion well below 0.3 mpy rate with prior tower bleed and chemical treatment
- Azoles use minimized (< 3%) by zero bleed

Auto HQ Performance Summary

- Two years on recycled water
- Ammonia strip, < 0.5 mg/L in tower water
- Over 80 COC (tower water concentrations)
- No scale
- No corrosion
- No bio-fouling

A Sustainable Future

Water Use Reduction Trade-offs!

- Acid & chemicals can provide some tower discharge reduction, but increase TDS to sewers
- Acid / pH control upsets result in rapid scale and efficiency loss, or system corrosion damage
- Chemical or NCD water use reduction is limited
- WWTP / Recyclers must use RO / EDI (energy intensive) to reduce TDS when limits exceeded.
- NGC / zero bleed can avert this waste
- Unintended consequences of "CA softener bill".

Why Zero Tower Bleed?

- Reduce sewer volume loading (20-40%)
- Reduce largest sewer TDS contributor
- TDS limits useful water recycling for irrigation
- Avert energy intensive TDS removal (RO, EDI)
- Water wasted per 1000 ton tower ~ 75 families
- TDS per 1000 ton tower ~ 800 home softeners

Zero Bleed Tower (Recycled Water) Reduce TDS Load to Sewer by 70-100%

Lb /Yr TDS to Sewer per 1000 Ton Load From 13,140,000 GPY Evaporation					
And 21,379,000 GPY Makeup @ 2.5 COC					
	MU TDS	Tower COC	Tower TDS	Gal / Year BD	# / Year TDS to Sewer
Tower (low COC)	730	2.5	1,825	8,239,000	125,604
Zero Tower BD	730	75	54,750	0	''0''
HES Regen Waste	-	-	22,700	181,028	33,146
Brine Line, Haul,	-	_	-	181,028	''0''

Evaporation Pond

Shovel Ready Green ROI

- Design-build installs, 3-5 weeks
- 20-40% potable reduction, 98% with recycled
- Restore cooling efficiency / reduce energy use
- Reduce water-embodied energy consumption
- Immediate ROI via water & energy reductions
- Enables LEED points 5 credit areas

Public / Private Infrastructure Partners

- Over 400,000 cooling towers in the US
- Cooling tower evaporation <u>energy is free</u>!
- Evaporate recycled water into biosphere
- Avert cost of further treatment & discharge
- 95-98% waste reduction, economic options
- Brine lines, bulk haul co-op, evap-pond
- Reduce high strength waste (TDS) to sewer
- Avert TDS removal costs for RO / EDI

Power Plants – huge opportunity for Recycled water / conservation

Soft water, soluble ions

Raw Water

	\triangleright	Use	47%	of	water
--	------------------	-----	-----	----	-------

- Water 20% of GA
- > ZLD ~10% parasitic
- Embodied water-

energy costs to public

HES / Tower BD (High TDS)

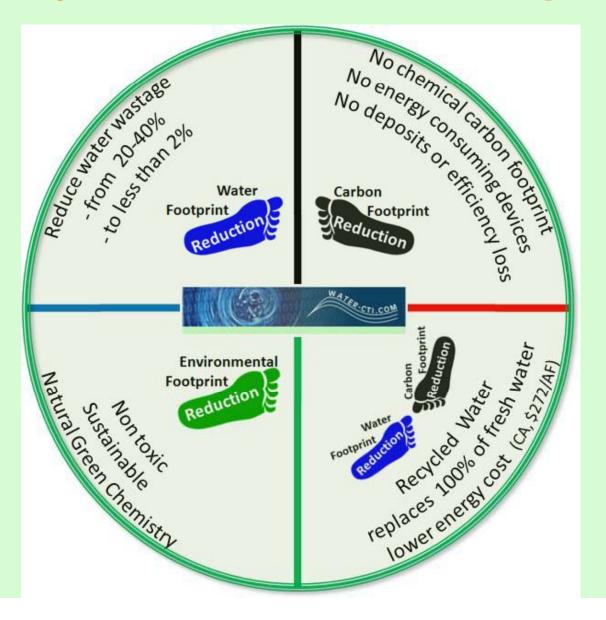
Evaporation Pond 35

Cooling Tower

WIN – WIN / Sustainable Future

- Improve cooling system energy efficiency
- Conserve limited fresh water supply.
- Beneficial use / disposal of recycled water.
- Reduce embodied water-energy consumed
- Reduce sewer volume and TDS loads
- Eliminate toxic & persistent chemical discharge.
- "Shower to Tower" / Green infrastructure

Current Recycled, High Silica, High Hardness Water Projects

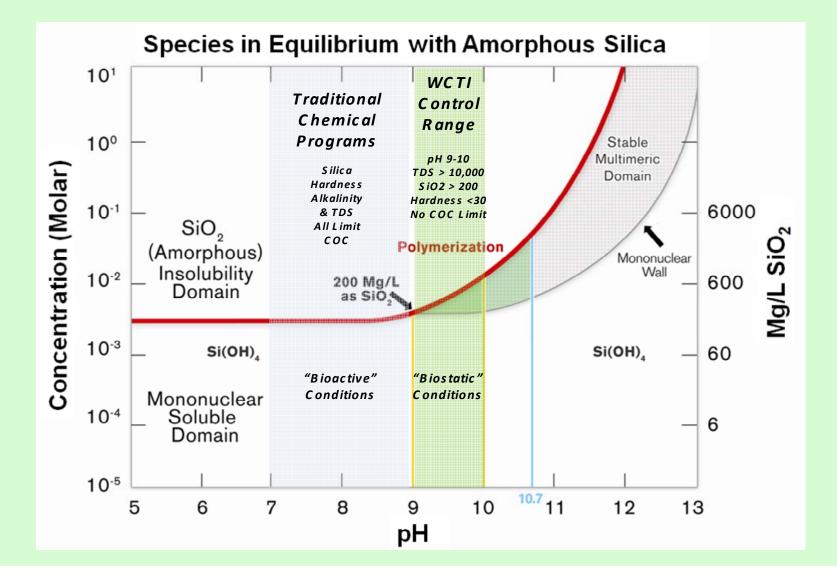

- Recycled Honda, CSUDH, LAX, Northrop, Equinix, LMU
- Boeing, Pratt Whitney, Lockheed
- Largest US Data Centers recycled waste water / 35-70 silica
- Power Generation Plants zero discharge

Summary: Recycled Water in Cooling Towers

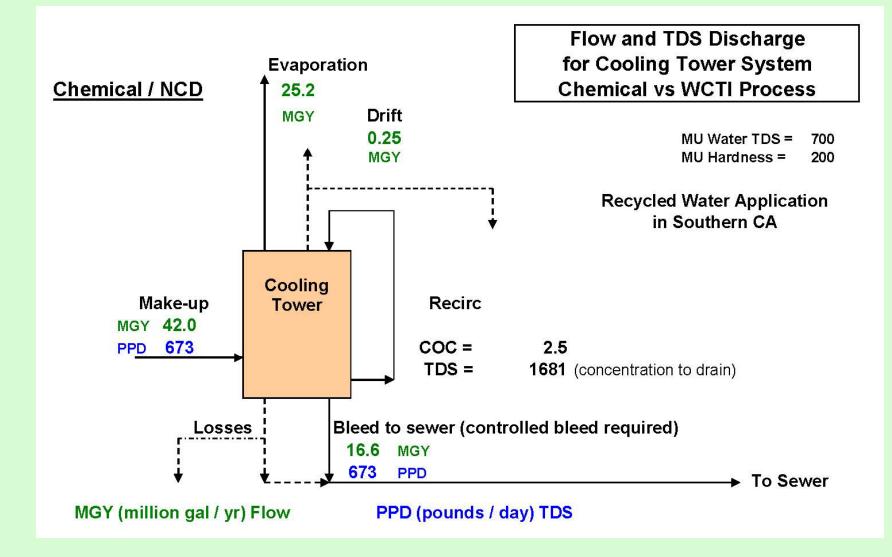
- 100% potable reduction with recycled water
- Reduce sewer volume load (20-40%)
- Reduce TDS and toxics to sewer
- Energy / water efficient, quick ROI
- 50% to 75% less cost than current treatments
- Green Infrastructure for a sustainable future

Recycled Water and Natural Green Chemistry can reduce these Footprints

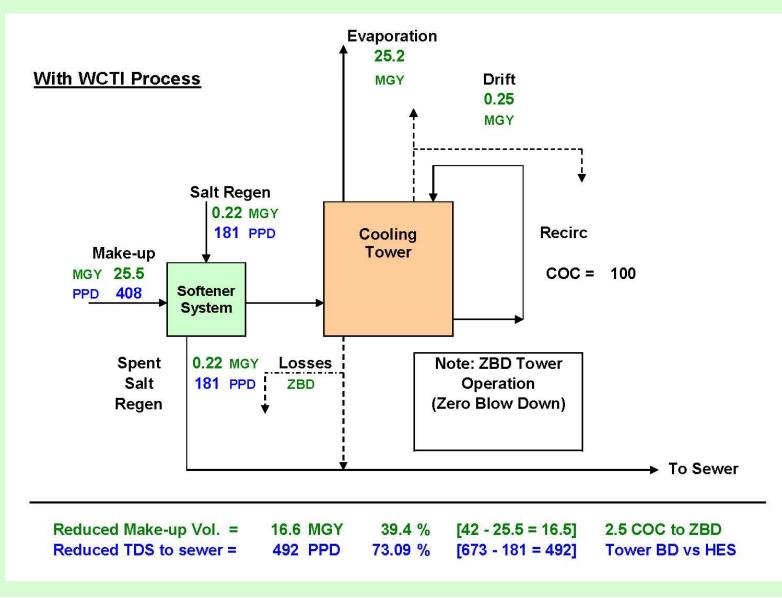
Questions?


Addendum – Research

Highly Soluble Sodium Salts Eliminate Scale Limitations

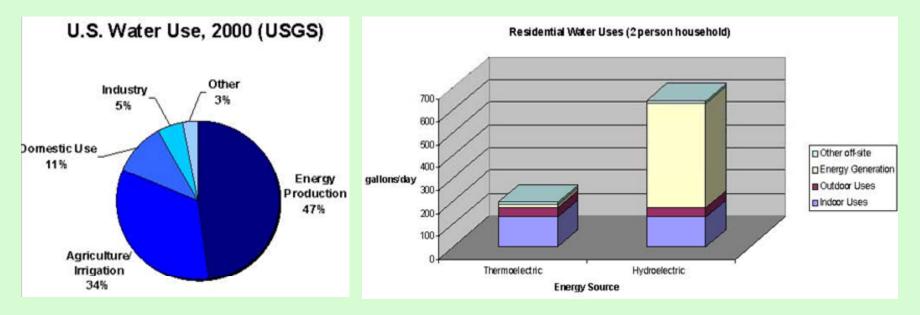

(Solubility of Ion pairs as sodium salts @ 30° C)

- Sodium Chloride (36% ~ 360,000 mg/L)
 Sodium Carbonate (16% ~ 160,000 mg/L)
 Sodium Sulfate (48% ~ 480,000 mg/L)
 Sodium Ortho-Phosphate (26% ~ 260,000 mg/L)
- Non-common ion effect also increases solubility (increased calcium solubility in seawater)


Silica Concentration / pH Dependent Relationship

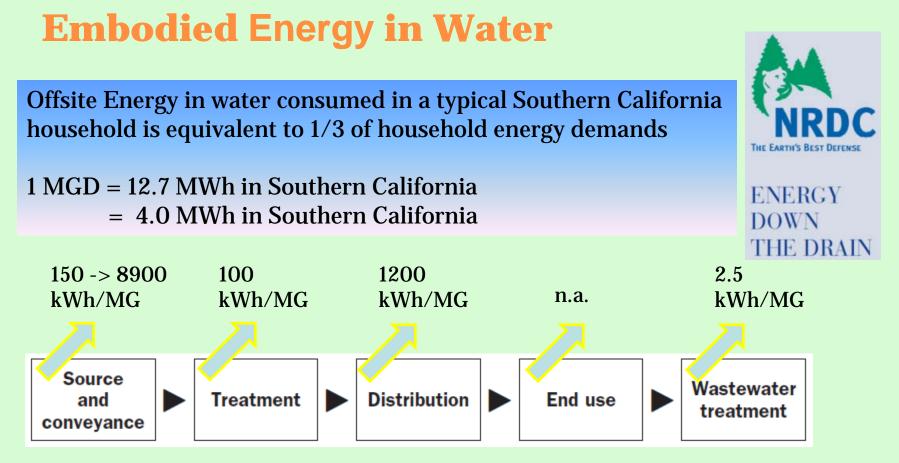
Tower TDS – Chemical / Low COC

Tower TDS – Zero Blowdown



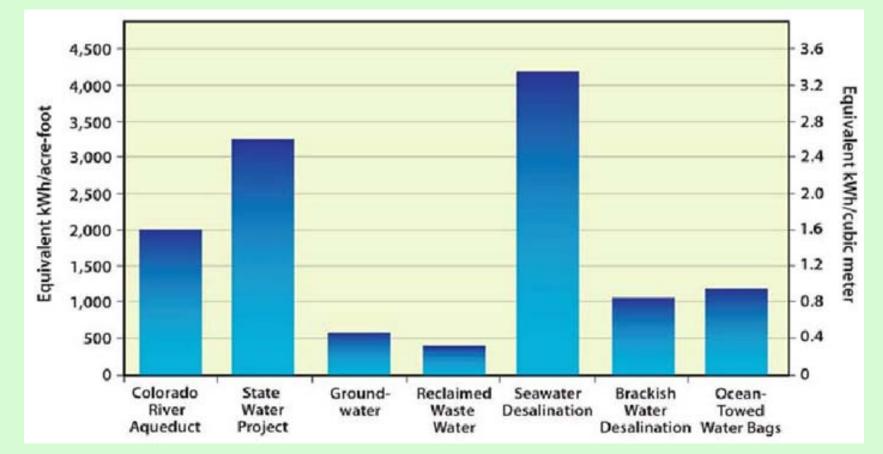
Reduce Energy Dependence

- Prevent and remove scale deposits
- Prevent and remove bio-fouling deposits
- No scale in high temperature exchangers
- maintain equipment efficiency (standards)
- Replace potable (100%) with recycled water
- Embodied water-energy use reduction
- Reduce chemical/transport carbon footprint



End use and Water-Energy Connection

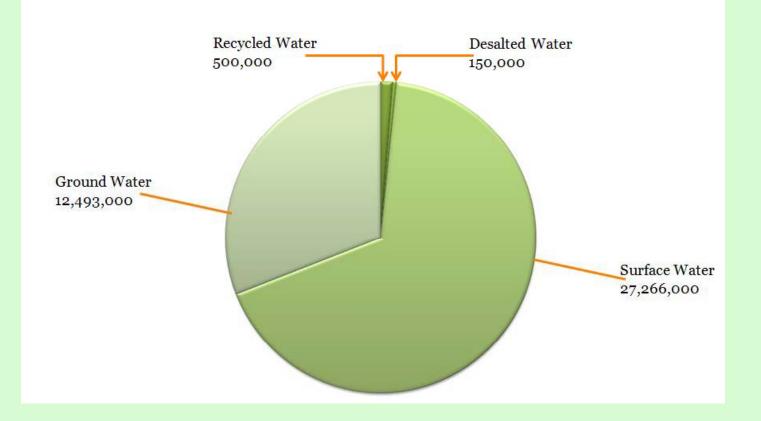
US Commercial buildings consume about 11% of the total water supply (but greater % of treated potable). Energy production (power) consumes almost four times as much water . Thus buildings that save energy also save embodied water .


Source: ARUP; Water Conservation Showcase 2009

Can water efficiency be a **more effective energy and carbon strategy** than traditional energy efficiency and renewable energy technologies?

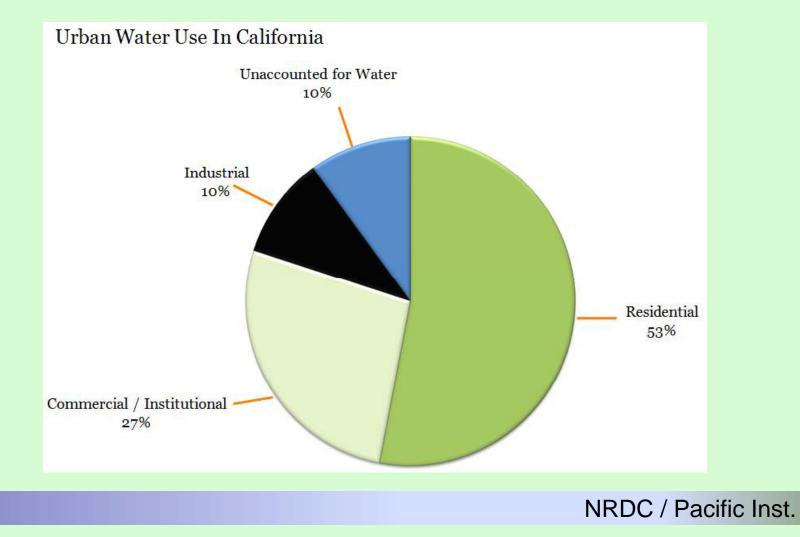
ARUP

Energy intensity of Water Sources San Diego, CA

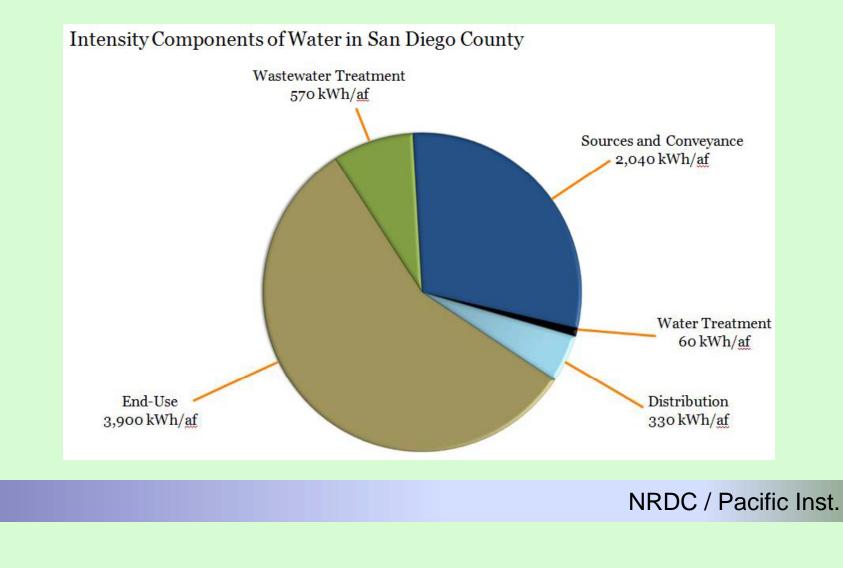


Source: Pacific Institute, Wolf et al., 2004

ARUP


40 million AF /yr Water, < 2% recycled

Primary Sources of Water In California in Acre-Feet per year



Source: "Energy Down The Drain", NRDC / Pacific Inst. 2004

Commercial-Institutional and Industrial water total rivals Urban Residential water use

Embodied water-energy use rivals total end use consumption by the public

Less than 2% recycled, 5% use by Industrial; Cooling towers can be largest non-irrigation use

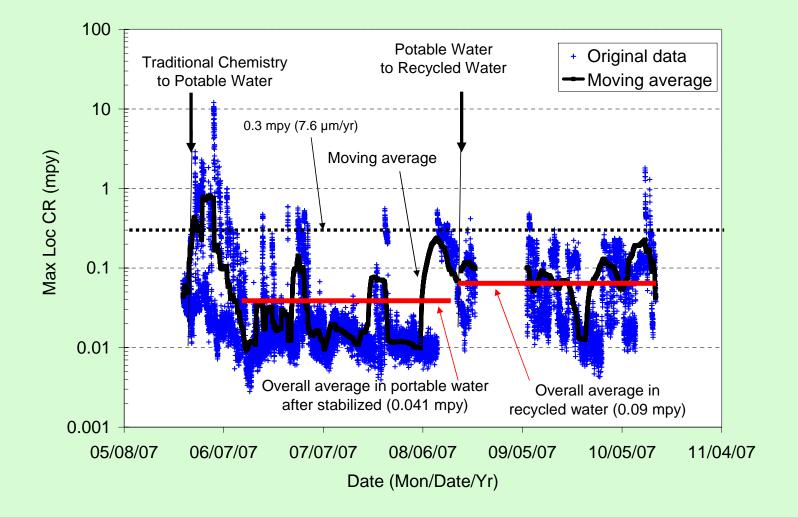
CALIFORNIA's Commercial-Institutional water reduction potential with zero tower bleed: ~ 16,500 AF per year

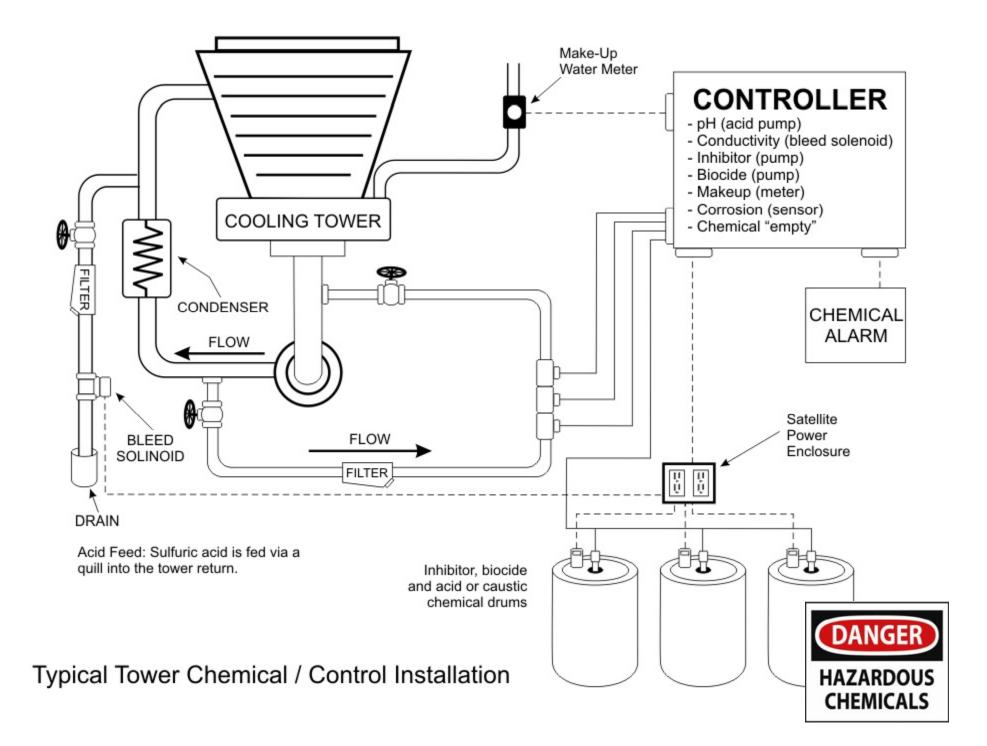
Building Type	System Type	Equivalent Full Load Hours	Tons	Ton-Hours of Operation Per Year	Annual Water Used at 3 cycles (Acre- Feet)	Annual Water Used Zero Bleed (Acre Feet)	Water Use Reduction Zero Bleed (Acre Feet)	Water Use by WCTI Process (Acre Feet)
Office Education Healthcare	Centrifugal, Helirotor Centrifugal, Helirotor Centrifugal, Helirotor	1,310 1,344 4,368	1,318,446 645,197 364,677	867,144,660 1,592,907,039	7,184 13,197	9,590 4,813 8,842	4,723 2,371 4,355	96 48 88
Mercantile Lodging	Centrifugal, Helirotor Centrifugal, Helirotor	2,184 1,835	308,572 168,312 2,636,892	308,778,903	2,558	3,741 1,714 28,699	1,842 844 14,136	37 17 287
Office Education Healthcare Mercantile Lodging	Absorption Absorption Absorption Absorption Absorption	1,310 1,344 4,368 2,184 1,835	85,897 42,035 23,759 20,104 10,966 182,761	56,494,771 103,778,438 43,906,262 20,117,051	468 860 364 167	625 314 576 244 112 1,87 1	308 154 284 120 55 921	6 3 6 2 1 19
Office Lodging	WSHP WSHP	1,310 1,835	413,352 45,928 459,280	84,277,880	698	3,006 468 3,473	1,480 230 1,7 11	30 5 35
Office	SCVAV	1,310	2,300	30,130,000 Totals	250 51,061	168 34,2 11	83 16,850	2 342

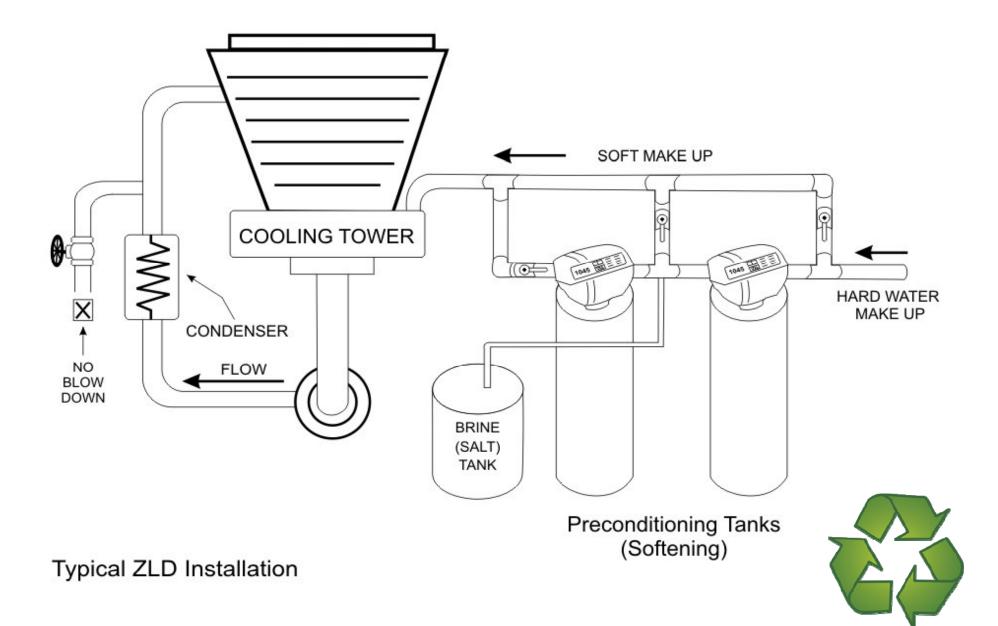
Source: PBMP, Riesenberger / Koeller & Company, 2006

Water, Energy, and TDS reduction targets for a Sustainable California

• 47% non potable use for power generation




- ~15% of potable for C&I towers (52,000 AF)
- ~ 5% of potable <u>wasted</u> by C&I towers (16,500 AF)
- Eliminate ~10-40% TDS load to sewers (from towers)
- Energy efficient cooling & standards (scale free)
- Reduce embodied water-energy with recycled water


Can water-energy reduction produce more Green ROI than renewable energy?

- There are over 400,000 cooling towers and evaporative condensers in the US
- A 10 gpm average tower water wastage per system totals 4 million gallons <u>per minute</u> of water and embodied energy down the drain
- If 30% of tower exchangers operate inefficient from deposition, restoration could save more energy than used by millions of US families

Localized Copper Corrosion (CMAS study) Chemical vs ZBD Potable vs ZBD Recycled

