

ALTERNATIVE TREATMENT TECHNOLOGY FOR RECIRCULATING COOLING TOWERS USING RW – A BIO-TECH FIRM'S STORY

Presented By: Joel E. Bowdan III, P.E.

2012 WateReuse California CII Pre-Conference Workshop

PRESENTATION OUTLINE:

Subject Introduction

Amylin Project Background

Cooling Tower Basics

Typical RW CT Implementation Challenges

Alternate Pretreatment Technology

Technology Benefits to RW Use

SUBJECT INTRODUCTION

- RW retrofit at two Amylin buildings (9360 & 9390)
- Typical RW quality poses
 O&M challenges to CTs
- Appropriate treatment at CT POU can address WQ
- Amylin's frank experience with the retrofit process
- What can the RW industry do better to facilitate process?

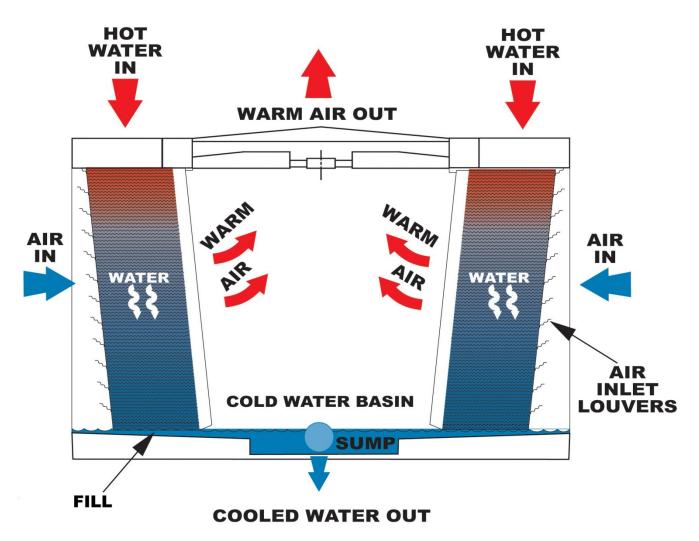
AMYLIN PHARMACEUTICALS BACKGROUND

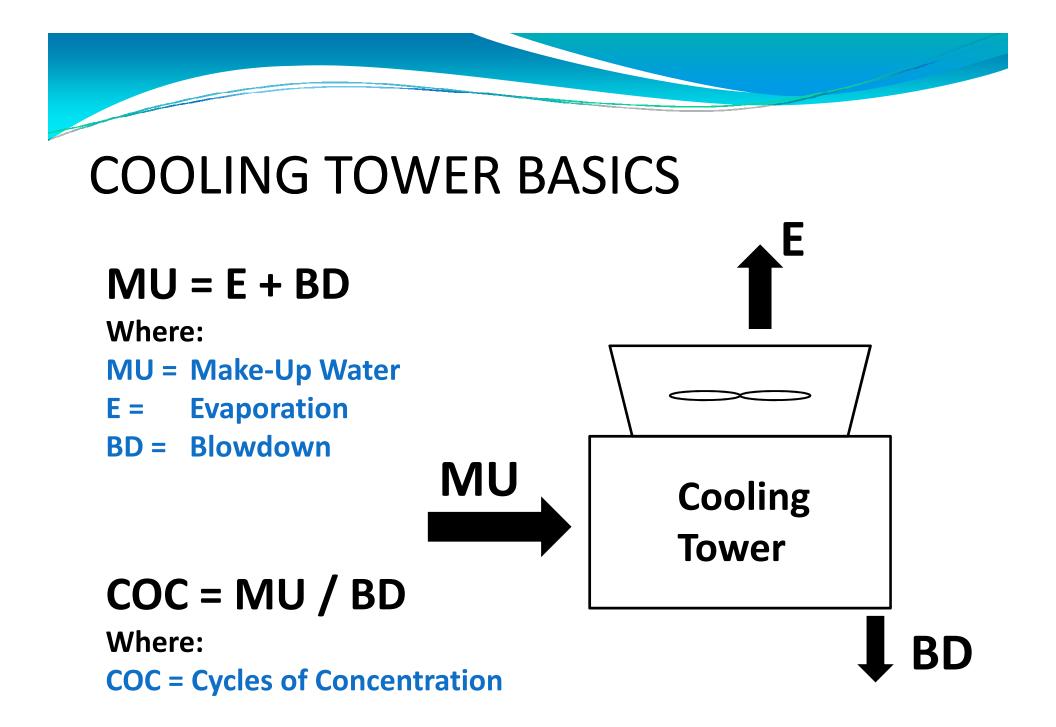
- Located in SD Golden Triangle
- Specializing in diabetes research and medicines production
- 104,000 ft² (9,662 m²) office/ research building, reflecting pond, and irrigation areas
- Prior potable water makeup 25,100 gpd (95 m³/d) for CT; 9,360 gpd (35.4 m³/d) pond and irrigation
- Previous RW retrofit at another facility

AMYLIN PHARMACEUTICALS BACKGROUND

Convert 9360 and 9390 to recycled water use

- Focus on feature pond, irrigation & cooling tower
- Reduce water
 procurement costs
- Reduce overall water use (implement conservation)





Project Goals

COOLING TOWER BASICS

RW IMPLEMENTATION CHALLENGES:

- Water quality typically poorer than potable (TDS, PO4, nutrients, etc.)
- Maximum COC of RW < PW</p>
- Increase in scaling potential
- Increase in corrosion potential
- Potential increase in bacteriological activity
- Condition of existing system
- Regulatory/permitting/inspection barriers & concerns

RW CT IMPLEMENTATION CHALLENGES

Constituents of Concern	Unit	City of SD RW Quality	Saturation Limits/Issues in Cooling Water
Total Dissolved Solids (TDS)	mg/L	914	Increases ionic strength & corrosion potential in cooling water
Calcium Hardness	mg/L as CaCO₃	162	Calcium carbonate scaling issues
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	Max. 500,000 mg/L without scale inhibitor
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	Max. 35,000 mg/L without scale inhibitor
Ortho-Phosphate	mg/L as PO₄	5.8	Calcium phosphate scaling
Ammonia	mg/L as N	0.3	Copper alloy corrosion issues
Chloride	mg/L	239	Corrosion issues
Total Org. Carbon (TOC)	mg/L	8.6	Fouling and biological issues

RW CT IMPLEMENTATION CHALLENGES

Constituents of Concern	Unit	City of SD RW Quality	Cooling Water Limits w/ Chemical Feed	Alternate Technology?
Total Dissolved Solids (TDS)	mg/L	914	< 5,000	
Calcium Hardness	mg/L as CaCO₃	162	<1,200	
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	< 1,000,000	
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	75,000	
Ortho-Phosphate	mg/L as PO₄	5.8	4 - 9	
Ammonia	mg/L as N	0.3	< 1.5	
Chloride	mg/L	239	< 1,500	
Total Org. Carbon (TOC)	mg/L	8.6	Fouling/Biological	

ALTERNATE PRETREATMENT TECHNOLOGY

- Patented Alternative Pretreatment Technology (WCTI)
 - Softening to remove Ca and Mg
 - Media filtration to lower TSS and prevent IX resin fouling
 - Operation at high COC (i.e., high TDS, pH alkalinity, phosphate and silica)
 - ✓ Non-common (diverse) ion effect
 - ✓ Scale & corrosion prevention
 - ✓ Biostatic

ALTERNATE PRETREATMENT TECHNOLOGY

Constituents of Concern	Unit	City of SD RW Quality	Cooling Water Limits w/ Chemical Feed	Alt. Pretreat. Technology
Total Dissolved Solids (TDS)	mg/L	914	< 5,000	< 100,000
Calcium Hardness	mg/L as CaCO₃	162	<1,200	< 30 *
Calcium Sulfate (Ca x SO ₄)	mg/L	36,612	< 1,000,000	N/A
Mag. Silicate (Mg X SiO ₂)	mg/L	1,404	75,000	N/A
Ortho-Phosphate	mg/L as PO₄	5.8	4 - 9	N/A
Ammonia	mg/L as N	0.3	< 1.5	< 60,000
Chloride	mg/L	239	< 1,500	< 60,000
Total Org. Carbon (TOC)	mg/L	8.6	Fouling/Biological	Biostatic

AMYLIN IMPLEMENTATION

Parameter	Unit	Value
Cooling Capacity	Ton	500
Delta T	Degree F	10
Recirculation Rate	gpm	1500
Evaporation Rate ¹	gpm	12

AMYLIN IMPLEMENTATION

Pretreatment System Installed

AMYLIN ECONOMIC ANALYSIS

Description	Previous Chemical Treatment	Revised Chemical Treatment	Alternative Green Technology
Operational Data			
Make-up Water Source	100% Potable	100% Potable	100% RW
Annual Average Evaporation, gpd	17,280	17,280	17,280
Annual Average Blow-Down, gpd	7,855	4,320	353
Annual Average Make-Up Water, gpd	25,135	21,600	17,633
Cycle of Concentration	3.2	5.0	50
Annual O&M Cost Comparison			
Annual Make-up Water Cost	\$44,650	\$38,370	\$6,880
Annual Blow-Down Cost	\$28,750	\$15,810	\$1,290
Annual Chemical Cost	\$8,000	\$10,000	\$ 0
Annual Salt & Patent Program Cost	\$0	\$0	\$11,900
Total Annual O&M Costs	\$81,400	\$64,180	\$20,070
Annual Cost Savings "Green" Tech	\$61,330	\$44,110	\$0
Total WCTI Capital Cost			\$21,350

IMPLEMENTATION CHALLENGES - ALTERNATE TECHNOLOGY -

Softener regenerate disposal

Requires proper functioning of existing open loop cooling system

Requires initial period of adjustment

Requires regular monitoring same as chemical treatment

Industry understanding of well known water chemistry for application

- Potential Regulatory Barriers -

Project implementation longer than expected, long review and approval periods

Local and county review and inspection process not consistent or clear – inefficiencies

Continued field inspection changes despite approved drawings

Need for state-wide cross-connection prevention detail uniformity

Amylin soured on process but looking forward to reduced O&M costs

OVERALL IMPLEMENTATION BENEFITS

- Potential for greater adoption of RW use in cooling towers
- Alternate technology adapts to challenging RW water quality
- Reduced water purchase cost (client benefit) and consumption (agency benefit)
- O&M costs minimized (typical ROI of 2 years or less)
- ✓ Qualifies for LEED credit

CONTACT INFORMATION

Joel E. Bowdan III, P.E. jbowdan@rbf.com (858) 614-5035

QUESTIONS & ANSWERS

2012 WateReuse California CII Pre-Conference Workshop

