NACE Paper No. 07626

Laboratory and Field Studies of Localized and General Corrosion Inhibiting Behaviors of Silica in Zero Liquid Discharge (High TDS Cooling Water) Using Real Time Corrosion Monitoring Techniques

Dan Duke Water Conservation Technology International, Inc.

Lietai Yang Corr Instruments, LLC

Presentation Outline

- Objectives of Study
- Silica Chemistry and Inhibition Mechanisms
- Laboratory Studies of Silica Corrosion Inhibitor
- Field Studies of Silica Corrosion Inhibitor
- Conclusions

Objectives of Study

- Establish confidence in transferring laboratory / pilot data to full operations
- Verify that silica chemistry can prevent corrosion in high TDS waters
- Demonstrate silica chemistry qualifies as "green" inhibitor chemistry and tool for water conservation

Silica Chemistry and Inhibition Mechanisms Limitations of Current Alkaline Cooling Water Treatment

<u>Limit</u>	Impact	<u>Control Mechanisms</u>
1. Ca/Mg	Scale	Blowdown / Inhibitor / Acid
2. Silica	Scale	Blowdown / Inhibitor
3. TDS	Corrosion	Blowdown / Inhibitor
4. pH	Corrosion / Scale	Blowdown / Acid

Silica Chemistry Approach

- Soften makeup water, no scale ions
- Concentrate TDS, eliminate blow down
- Control pH to 9 to 10 range
- Concentrate silica to 200-600 mg/L
- No silica saturation limitations
- Chemicals not needed for most waters

Silica Inhibitor Chemistry

- Evaporative concentration of alkalinity, sodium, and silica in makeup
- Silica equilibrium and corrosion inhibition attained above pH 9 and 200 mg/L silica
- System chemistry and temperature of water catalyze silica polymerization
- Excess silica forms non scaling colloids

Relationship between Soluble, Insoluble and Polymerized Silica Species at Varying pH and Concentration

Silicate Anodic Mechanism

- Monomeric silica is polymerized to multimeric silicates by system chemistry
- Silicates hydrolyze to negatively charged colloidal particles
- Colloidal silicate migrates to anodic sites on metal and react with metal oxides
- Silica forms self repairing silicate gels on metal surface

Silica Cathodic Mechanism

- Saturated silica, in equilibrium with amorphous silica, is attracted to metals
- Cathodic gel layer forms on metals for total barrier to corrosion
- Even amphoteric metals (Al, Zn) are protected by silica gel layer at high pH
- Gel layer growth is self limiting

Laboratory Studies of Silica Corrosion Inhibitor

at High TDS / Temperatures

High TDS / High Temperature Corrosion Inhibition Studies

- Used real time coupled multielectrode array corrosion probes
- Probes measured peak localized and general corrosion rates
- Test water chemistry:
 - 50,000 conductivity
 - 450 ppm silica
 - 9000 ppm chloride
- Temperatures:
 - 77° F; 130° F; 160° F; 190° F (25° C; 54° C; 71° C; 88° C)
- Metals:
 - CS1008; 316L SS; AL1100; Cu 1100; Zn

Localized and General Corrosion Rates of Carbon Steel in High Silica - High TDS Water

Localized and General Corrosion Rates of Carbon Steel in Unprotected Seawater at Room Temperature

Localized and General Corrosion Rates of Aluminum 1100 in High Silica - High TDS Water

Localized and General Corrosion Rates of Aluminum and 316L SS in Unprotected Waters at Room Temperature

Post-Test Probes – Steel Localized Corrosion at 40 mpy in Unprotected Brine vs. < 0.2 mpy in Silica Inhibited Brine

Carbon steel

316L Probe

Three weeks in seawater at room temperature

Silica Inhibitor Bench Study Results

- CS, Cu, Al, Zn, SS corrosion mitigated to very low rates from 77° to 190° F
- Aluminum corrosion less than steel, even at pH 10 (amphoteric metal)
- 316 SS chloride attack mitigated
- Localized corrosion (pitting), typically 10-40X general rates, equally mitigated

Field Studies of Silica Corrosion Inhibitor

"Green" Inhibitor Chemistry

- System chemistry derived from concentration of (soft) makeup water ions and silica
- No organic or discharge restricted chemicals are required
- Natural, non-toxic chemistry
- Limited or no biocide use
- Blow down not required

Field Study #1 Industrial Solvents Processor

- Four years application, solvent separation process using vacuum distillation
- Tube & Shell Exchangers, 304SS, Shell Side 450° F, no deposit on tubes
- Both Corrator and 60 day coupon techniques; CS < 0.2 mpy, Cu < 0.1 mpy, 304SS negligible
- "ZLD", soft water MU, no chemicals

Cooling Tower No. 1 - Makeup & Tower Concentration of Chemistry (COC) Ratios

Tests	Tower	Makeup (soft)	COC
Conductivity, µmhos	33,950	412	82
рН	10.01	8.23	-
Turbidity, NTU Neat	3	0.08	-
Silica, mg/L SiO ₂	382	9.5	40
Calcium, mg/L CaCO ₃	16.0	0.15	I
Magnesium, mg/L CaCO ₃	3.33	0.05	-
Chloride, mg/L	6040	80	76
Tot. Alkalinity, mg/L	13200	156	85

Field Study #2 Refrigeration Chiller Condensers

- Trane enhanced tube condensers with three years operation on silica chemistry
- Corrator; CS rates reduced from 8.0 mpy to 0.5 mpy in 2 weeks
- Both Corrator and 60 day coupon techniques; CS < 0.2 mpy, Cu < 0.1 mpy
- "ZLD", soft water MU, no chemicals

Cooling Tower No. 2 - Makeup & Tower Concentration of Chemistry (COC) Ratios

Tests	Tower	Makeup (soft)	COC
Conductivity, µmhos	66,700	829	80
рН	9.61	7.5	-
Turbidity, NTU Neat	4	0.08	-
NTU Filtered (0.45µ)	2	-	-
Silica, mg/L SiO ₂	306.4	11	28
Calcium, mg/L CaCO ₃	21.5	0.20	-
Magnesium, mg/L CaCO ₃	0.65	0.05	-
Chloride, Mg/L	17,900	216	83

Carbon Steel Corrosion Coupon #1590 (0.2 mpy @ 62 days - corrosion under mount)

Carbon Steel Coupons 60 day exposed (#1652) @ 0.017 mpy and non-exposed (#1664) control @ 0.013 mpy

Field Corrosion Summary

- CS coupon and Corrator rates < 0.2 mpy
- Cu coupon and Corrator rates < 0.1 mpy
- Galvanized steel "white rust" mitigated
- Coupon mount bias correction shows CS corrosion less than 0.020 mpy!

Other Benefits of Silica Chemistry

- Permits use of reclaimed waste water or brackish water sources
- Biological propagation is impeded at elevated TDS & pH
- Simple control with "ZLD" or reduced blow down, eliminates chemicals

Field Application Experience

- Four years of evaluation / application
- Commercial, Institutional, Food, Chemical, and Steel industry applications
- Marley, BAC, Evapco and other towers
- System materials: galvanized, stainless, copper, plastic, fiberglass, and concrete

Silica Inhibitor Conclusions

- Excellent corrosion inhibitor at high TDS
- Excellent inhibitor at high temperatures
- Protects all metals, mitigates "white rust"
- Permits "ZLD", water savings, no scale
- Can use reclaim / reuse waste waters
- Provides "green" water chemistry

Conclusions on Pilot Study Method

- Study results corroborate four years of field corrosion study results
- The method facilitates efficient (time/cost) selection of inhibitors or metallurgy
- The method accurately predicts localized (pitting) rates, unlike traditional methods
- Quantifying localized corrosion is crucial to selecting required metallurgy and inhibitors

Questions?