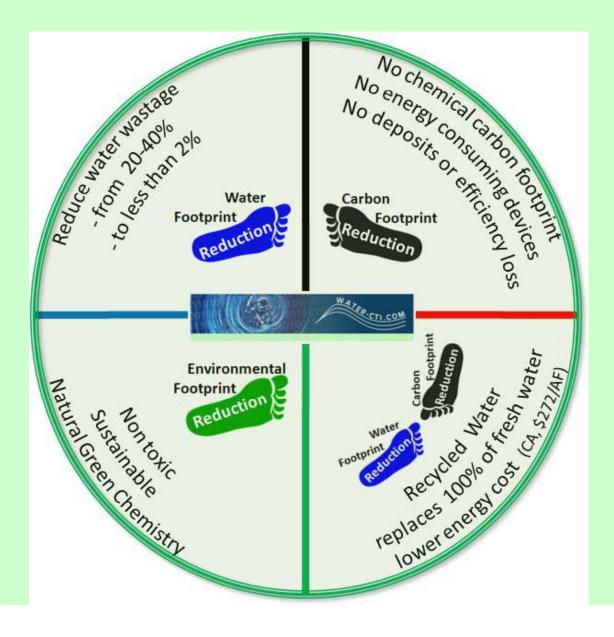
13<sup>th</sup> Annual GC&EC Green Corrosion Inhibition and Water Treatment Session

#### Sustainable Natural Green Chemistry (NGC) for Cooling Water Treatment

Report by Dan Duke Water Conservation Technology International


# **Presentation Outline**

- Cooling Water Treatment Green Challenge
- Organic and Toxic Chemical Discharge
- NGC How it Works Why it's Green
- ZBD Conserve Water & Environment
- Case History Recycled Water Use

# **Cooling Water Treatment**

**Green Challenge** 

# Cooling Towers Challenge Water Treatment to Reduce Major <u>Water</u>, <u>Carbon</u> and <u>Environmental</u> Foot Prints



# Contributors

- Corr Instruments Lie Yang, PhD
- Anderson Engineering Eric Anderson
- The Boeing Company Roger Sampair
- Yahoo, Inc. A.D. Robinson
- West Basin Utility District Joe Walters
- NACE / CONRAD Mike Rogers
- Paul Labine Associates PhD Chemistry

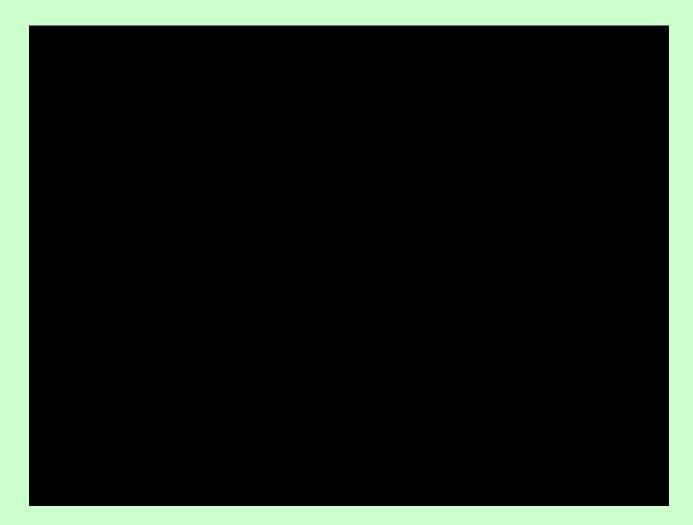
#### NGC technology is patented

(Licensed by Water Conservation Technology International)

US 6,929,749 / Scale Inhibition US 6,949,193 / Scale Inhibition US 6,998,092 / Corrosion Inhibition US 7,122,148 / Corrosion Inhibition US 7,517,493 / Corrosion Inhibition

# **Green Chemistry Priorities**

- Less toxic, less hazardous, biodegradable
- Innocuous feedstock, renewable, natural process
- Eliminate energy and material intensive processes


# What Cooling Tower Systems Do

- Consume power to evaporate pure water and remove heat from cooling water
- Consume second largest (5%) individual quantity of fresh water after irrigation
- Concentrate minerals in source water that are discharged to sewers or streams
- Discharge organic chemicals and biocides used for scale, corrosion and bio control

# Water Sustainability Challenges

- Fresh water supply for nature, irrigation, population, industry are diminishing
- Water source quality is deteriorating
- Costs for water acquisition, transport (energy) and purification increasing rapidly
- Sewers / WTPs overloaded by discharge
- Organics, toxicants and TDS (source minerals) are limiting water reuse

#### Deteriorating Water Quality Causes More Discharge for Chemical / NCD Treatments



# Water Treatment Priorities For Cooling Tower Operators

- Reduce 20-40% water discharge costs
- Eliminate toxic and hazardous chemicals
- Eliminate energy loss from scale / fouling
- Mitigate corrosion of system metals
- Reduce capital and maintenance costs
- Obtain assured supply of water

# WCTI Priorities for R&D

- Eliminate tower discharge (ZBD)
- Replace corrosion & scale chemicals
- Replace biocides & toxicants
- Eliminate chemical handling hazards
- Reduce power use / remove deposits
- Minimize treated discharge (1-2% HES)
- Use recycled water (replaces 100% fresh water and source energy use)

#### Green Reality vs Green Incentive

- Many green concepts are economically unfeasible or pass high costs to consumers
- Sustaining water or energy or environment should not result in respective poor tradeoffs
- Cost efficient technologies are needed to incentivize commercial and industrial tower operators to replace non-green chemistry

# **Organic & Toxic Chemicals**

#### **Discharged by Cooling Towers**

## Function & Composition of Chemicals Discharged by Cooling Towers

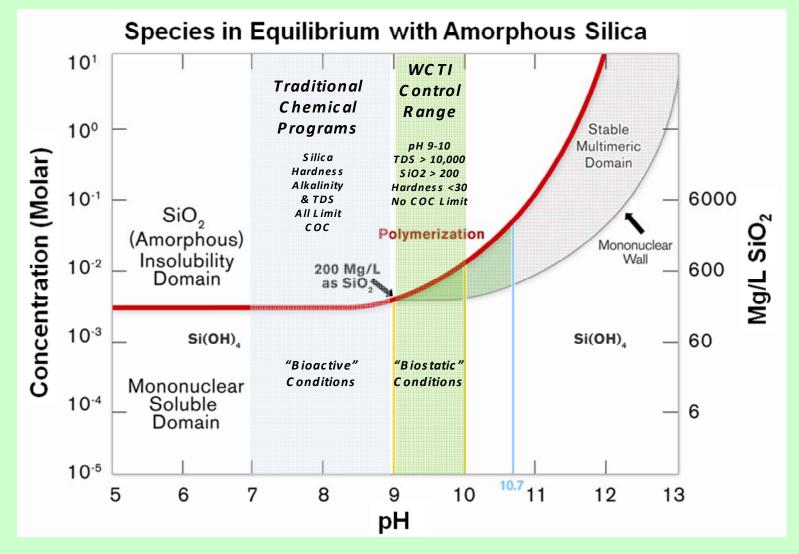
| Product Function                | Chemical Composition                            |
|---------------------------------|-------------------------------------------------|
| Biocides to control bio-growth  | organic – non oxidizing<br>halogens - oxidizing |
| Dispersants for deposit control | organic hydrocarbons                            |
| Steel corrosion inhibitors      | organic, phosphate, zinc,<br>molybdate          |
| Copper corrosion inhibitors     | organic hydrocarbons                            |
| Scale inhibitors                | organic, phosphate esters, polyphosphate        |

# Quantities of Chemicals Discharged by Tower Blowdown

- 70 million pounds annual discharge of non-oxidizing organic biocides in US
- Even greater halogen biocide use, source of AOX (absorbable organic halogens)
- Over 400 million pounds annual discharge of deposit, scale and corrosion inhibitors
- Over 500 billion gallons annual tower water blowdown is the vehicle

#### Natural Green Chemistry (NGC)

How it Works Why it's Green


# Natural Chemistry Process

- Major minerals in water are Ca, Mg, Na, chloride, sulfate, carbonate and silica
- Exchange Ca & Mg (low solubility ions) with innocuous Na (salt or NaCl)
- Silica polymerized to amorphous silicates by saturation of silica, TDS, alkalinity (pH) with water evaporation
- Zeolite exchange / silica polymerization (natural processes that occur in nature)

## How NGC Inhibits Corrosion

- Soft tower water permits 20 to 500 COC (concentrations) of soluble ions versus typical 2 to 5 COC (with hard water)
- Natural tower water chemistry and temperature catalyze silica polymerization
- Silicates form self limiting protective film on all metal surfaces
- Excess silica forms non-scaling and stable silica colloids

#### Silica Concentration / pH Dependent Relationship



20

# **Natural Biostatic Water**

- Elevated pH and TDS are naturally biostatic to bacteria, spores and viruses
- Hydrolysis of peptide chains occurs as water pH is increased (used in wastewater treatment)
- Proteins & enzymes also denatured by high TDS
- Natural pH/TDS increase as water is evaporated and concentrated with zero tower blowdown
- Report by Anderson Engineering (water-cti.com)

#### Eliminate Tower Discharge and Reduce TDS Loadings to Sewer by 70-100% (Recycled Water Example)

| TDS Discharge to Sewer with 1000 Ton Tower Load (13,140,000 GPY) Evaporation |        |           |               |                         |                                    |  |  |
|------------------------------------------------------------------------------|--------|-----------|---------------|-------------------------|------------------------------------|--|--|
|                                                                              | MU TDS | Tower COC | Discharge TDS | Gal / Year<br>Discharge | # / Year TDS<br>Discharge to Sewer |  |  |
| Tower BD (Chemicals & low COC)                                               | 730    | 2.5       | 1,825         | 8,239,000               | 125,604                            |  |  |
| NGC / ZBD Tower Operation                                                    | 730    | 75        | 54,750        | 0                       | " <b>0</b> "                       |  |  |
| HES Softener Waste                                                           | -      | -         | 22,700        | 181,028                 | 33,146                             |  |  |
| Brine Line, Haul or Evaporate Pond                                           | -      | -         | -             | 181,028                 | <b>"</b> 0"                        |  |  |

#### **Reduced Discharge / TDS Disposal to Evaporation Pond**



**Raw Water** 

Soft water, soluble

ions Present

**Cooling Tower** 

HES / Tower Discharge (High TDS)



**Evaporation Pond** 

#### NGC Will Remove Existing Scale Deposits! Reduce <u>Water</u> use and save <u>Energy</u>

#### (100 mg/L silica in makeup water to tower)

| Performance Measurements       | Chemical Treatment                  | NGC                                 |  |
|--------------------------------|-------------------------------------|-------------------------------------|--|
| Tower COC (TDS concentrations) | 1.4                                 | 80 (ZBD)                            |  |
| Tower Water Wasted             | 70%                                 | 1%                                  |  |
| Tower Fill / Exchanger         | Visible Scale / Deposits            | Removed / Clean Surfaces            |  |
| Average Planktonic Count       | $10^4 - 10^5 \ \mathrm{CFU/ml}$     | 10 <sup>0</sup> CFU/ml              |  |
| Average Sessile Count          | 10 <sup>6</sup> CFU/cm <sup>2</sup> | 10 <sup>1</sup> CFU/cm <sup>2</sup> |  |
| Average Biocide Usage          | 2.0 – 2.5 gpd                       | 0.05 gpd                            |  |
| Exchanger Amperage Loading     | 34                                  | 25                                  |  |

# NGC Bottom "Green" Line

- No corrosion or scale inhibitors used
- No biocides or toxic chemical discharge
- No energy consumed by fouling / NCDs
- 20-40% or more water use reduction
- Discharge reduced to 1-2% innocuous softener waste (neutral mineral salts)
- Provides TDS discharge load reduction
- Equally effective using recycled water

# Zero Blow Down (ZBD)

# How NGC / ZBD chemistry sustains water, energy, environment

# Chemical and NCD (non-chemical device) Limitations

- Primarily rely on stability index chemistry (LSI) to control scale and corrosion potential (need Ca)
- Must discharge tower water due to solubility limitations of scaling mineral salts
- Rely on chemical inhibitors, acid and biocides to limit scale, corrosion and fouling potential
- Neither chemicals nor NCD significantly reduce water use / discharge volume
- Corrosion inhibition is ineffective at high TDS
- Vulnerable to scale and mineral deposits

# Energy Efficiency Losses From Low Solubility Mineral Deposits



#### NGC - Highly Soluble Sodium Salts Eliminate Scale Limitations

(Solubility of Ion pairs as sodium salts @ 30° C)

- Sodium Chloride
- Sodium Carbonate
- Sodium Sulfate
- Sodium Ortho-Phosphate

 $(36\% \sim 360,000 \text{ mg/L})$ 

- (16% ~ 160,000 mg/L)
- (48% ~ 480,000 mg/L)
- (26% ~ 260,000 mg/L)

Non-common ion effect also increases solubility (increased calcium solubility in seawater)

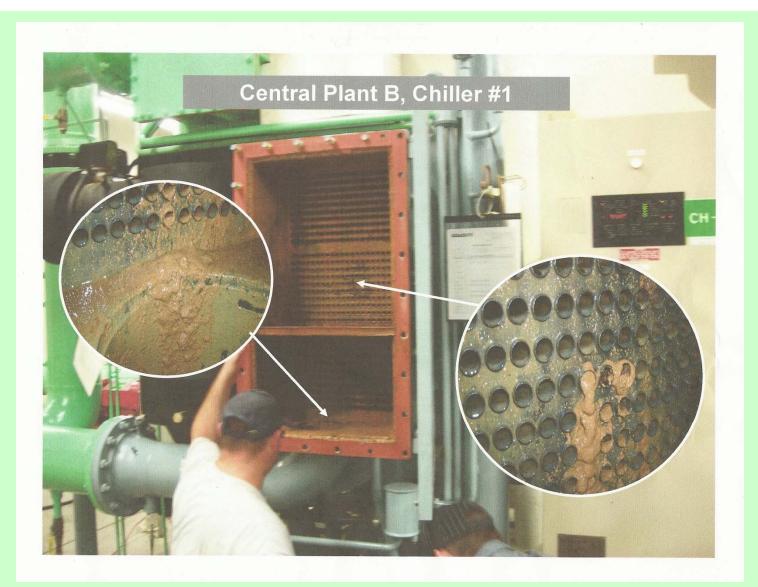
### NGC / ZBD Expand Treatment Options & Performance

- NGC permits cost viable ZBD operation with small or large cooling tower systems
- "State of Art" corrosion & scale inhibition at TDS levels from 5,000 to 150,000 mg/L
- Discharge eliminated without corrosion, scale, or bio-fouling; and reduced pathogen risk
- Ideal for high silica / hardness / TDS water; and includes recycled water sources

#### High Efficiency Softening (HES) Equipment (Low Investment Cost / Excellent ROI)

- Equipment with low salt use design (4# salt / CF resin), provides 30-50% salt use reduction
- Typical regeneration cost from \$0.07 to \$0.22 per 1000 gallons of treated water
- Typical tower water use and discharge cost savings are \$3.00 \$12.00 /1000 gallons
- Capital cost recovery typically 3 to12 months
- Municipal water conservation incentives
- 75% reduction in regeneration waste volume

# **Other NGC Opportunities**


- RO reject reuse as tower makeup (with softened feedwater)
- Use lower cost metals (steel, aluminum, no longer vulnerable to corrosion and scale)
- Use more heat transfer efficient metals (aluminum, copper, steel)
- Regeneration waste recovery and reuse

# **Case History**

Recycled Water Use (treated municipal sewage)

### Challenges With Recycled Water in Cooling Towers

- Suspended solids increase fouling
- Ammonia attacks copper / alloys
- Increased bio-fouling
- Increased scale and corrosion
- Increased water wastage and sewer loading
- Increased chemical cost (2-4X)



Cooling tower systems become incubators for biogrowth, fouling, under deposit corrosion

#### Customers Control Recycled Water (RW) Quality and Benefits

- Use high efficiency filtration (HEF) on site
- Use high efficiency softening (HES) on site
- Reduce water & chemical costs 50-75%
- Maintain energy efficient operation
- Acquire additional building LEED points
- Water restriction guarantees (recycled)

# Natural Chemistry Process permits Towers to ...

- Reduce tower water use by 20-40%
  (9,000-24,000 GPD per 1000 tons load)
- Evaporate over 98% of water used
- Replace 100% fresh water with recycled
- Save \$272 /AF in energy cost (CA)
- Operate with natural bio-static water
- Eliminate scale, corrosion and bio fouling

# **Auto HQ Plant / Recycled Water**

- Five central plant cooling towers, Trane copper tube chillers/absorber, plate & frame exchanger
- HEF & HES Pre-treat systems
- Recycled Water Quality
- Ammonia = 38 mg/L
- TDS = 730 mg/L
- Hardness = 224 mg/L
- Total PO4 = 0.9 mg/L
- Turbidity = 3 ntu Avg.



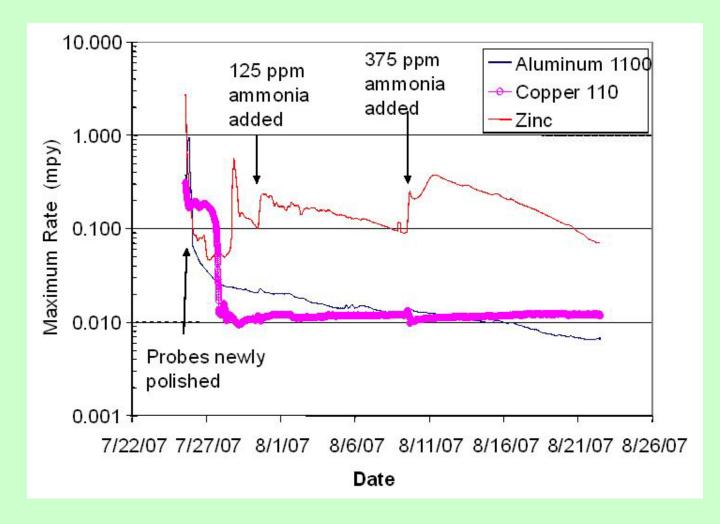
# **Tower Ammonia Stripping**

In a waste stream, ammonium ions exist in equilibrium with ammonia.

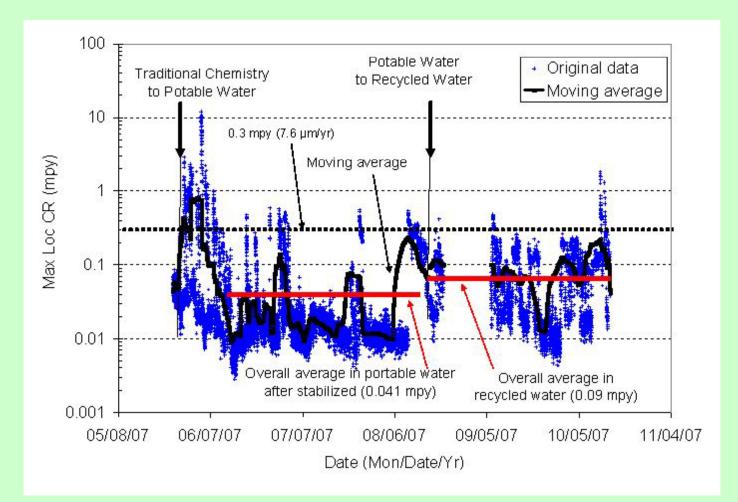
#### $NH4^++OH^- = NH3 + H2O$

- 1. Below pH 7, virtually all the ammonia is soluble ammonia ions.
- 2. Above pH 12, virtually all the ammonia is present as a dissolved gas.
- 3. Between pH 7 and 12, both ammonium ions and dissolved gas exist together.
- 4. Percentage of dissolved gas increases with pH / temperature.
- 5. Elevated pH and temperature favor removal of ammonia from solution as the gas when water is scrubbed over a tower.

# Tower ZBD Chemistry with NGC Treated Recycled Water


| ZBD Tower / Filtered and Softened Recycled Makeup Water COC (Concentration of Chemistry) Ratios |        |         |     |  |
|-------------------------------------------------------------------------------------------------|--------|---------|-----|--|
| Sample / Tests                                                                                  | Tower  | Soft MU | COC |  |
| TDS, mg/L (NaCl Myron L 6P)                                                                     | 30,000 | 1100    | 27  |  |
| Ph                                                                                              | 9.8    | 7.1     | NA  |  |
| Silica, mg/L SiO <sub>2</sub>                                                                   | 350    | 24      | 15  |  |
| Calcium, mg/L CaCO <sub>3</sub>                                                                 | 13     | 0.2     | NA  |  |
| Magnesium, mg/L CaCO <sub>3</sub>                                                               | 6      | 0.1     | NA  |  |
| Sulfate, mg/L SO <sub>4</sub>                                                                   | 3300   | 127     | 26  |  |
| Chloride, mg/L NaCl                                                                             | 5800   | 214     | 27  |  |
| Tot. Alkalinity, mg/L CaCO <sub>3</sub>                                                         | 5300   | 192     | 28  |  |
| Ammonia, mg/L NH <sub>4</sub>                                                                   | 0.5    | 34      | NA  |  |
| Total Phosphate, mg/L PO <sub>4</sub>                                                           | 16     | 0.6     | 27  |  |
| TTA, mg/L as tolytriazole                                                                       | 15     | NA      | NA  |  |

#### **Corrosion of Copper Alloys by Ammonia**

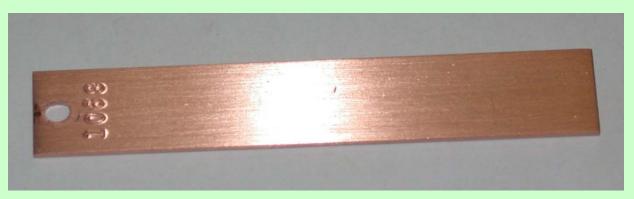

- Ammonia in recycled water is aggressive to brass makeup valves (untreated, failed in less than 12 months, replaced with stainless).
- Don't use copper pipe for restrooms!
- Typical copper corrosion is presented below.

| Corrosion Rates of Copper Alloys in 0.8% Ammonia at 104° F                            |                |     |      |  |
|---------------------------------------------------------------------------------------|----------------|-----|------|--|
| Alloy                                                                                 | Corrosion rate |     |      |  |
|                                                                                       | mdd            | тру | mm/y |  |
| Copper                                                                                | 85             | 14  | 0.36 |  |
| Cartridge Brass (70:30 Cu-Zn) 260                                                     | 49             | 7   | 0.2  |  |
| Gun Metal (88:10:2 Cu-Sn-Zn) 905                                                      | 30             | 5   | 0.1  |  |
| Copper-manganese alloy (95:5 Cu-Mn)                                                   | 9              | 2   | 0.05 |  |
| Source: After J.A Radley, J.S. Stanley and G.E. Moss, Corrosion Technology 6:229:1959 |                |     |      |  |

### **Corrosion Studies With Ammonia in Silica and Azoles Treated Water**



#### Copper Corrosion (CMAS study) Chemical vs ZBD Potable vs ZBD Recycled




43

## **Copper Corrosion Results** (CMAS) **Chemical / ZBD Potable / ZBD Recycled**

- The impact of ammonia (NGC treated water) on localized corrosion was a very minor increase from 0.04 to 0.09 mpy
- ZBD corrosion rates on potable and recycled water were well below the 0.3 mpy localized rate with chemicals and potable water

#### **Coupon Weight Loss Results**



Copper coupon, exposed 99 days, 0.16 mpy corrosion rate (high under mount corrosion bias).



Carbon steel coupon exposed 99 days with 0.426 mpy corrosion rate (high under mount corrosion bias).

# Results: ZBD Tower Chemistry Study for Recycled Water

- Ammonia stripped in tower to < 1 mg/L.
- Ammonia does not affect silica protection of steel, aluminum and zinc.
- Azoles are highly effective for copper protection from ammonia in ZBD water (patent pending).
- Biostatic tower chemistry was not affected by recycled organics and phosphate nutrients.

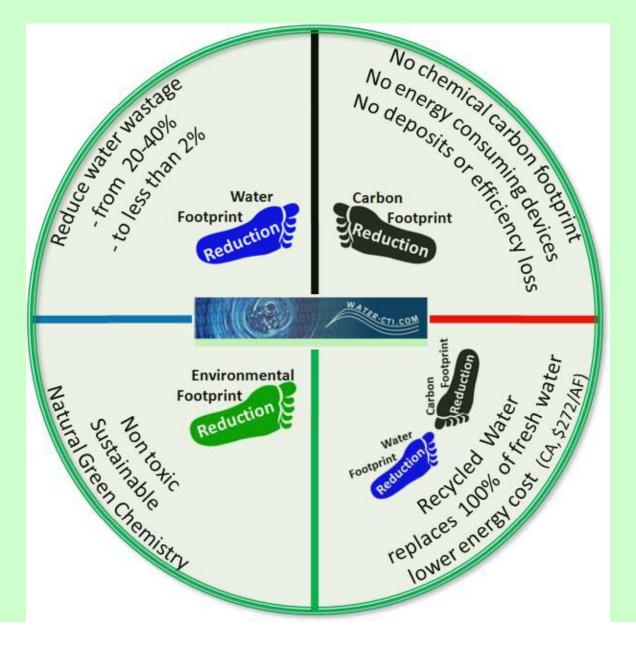
#### Steel Mill - Mild Steel Coupons 60 Day Exposure VS Non-exposed 0.017 mpy (1652) VS 0.013 mpy (1664 control)



Steel Mill – Galvanized Tubes – 30 Months Service No White Rust at up to 146,000 mg/L TDS Galvanized Coupon after 60 days exposure



# **Recycled & High Silica Source Water Projects**


- West Basin Honda, CSUDH, Toyota, LAX, Air Products
- Boeing Multiple Western US Sites
- Major US Data Centers (industrial reuse / 35-70 silica)
- Major Chip Manufacturers Philippines (>100 mg/L silica)

# Summary: Recycled Use Expansion in Cooling Towers



- 100% fresh water reduction with recycled water
- ZBD reduces water wastage by 20-40%
- Reduced TDS and toxics to sewer
- HEF / HES cost efficient water quality upgrade
- Quick ROI (< 12 months) from savings
- Water restriction guarantees Recycled Water
- <u>50% to 75%</u> less cost than chemical treatment
- Green / energy conserving technology

#### NGC Can Reduce These Foot Prints



# Questions?