CONRAD 2007

Water Use and Discharge Minimization Using Silica / ZLD Approach for Evaporative Cooling Towers

Report by Dan Duke
Water Conservation Technology International
water-cti.com

Presentation Outline

- Limitations of Traditional Treatment
- Silica Corrosion Inhibition Chemistry
- New ZLD Technology
- Power / Industrial ZLD Example
- Cascaded ZLD Operation
- Steel Mill ZLD Case History
- Waste Water Use (Ammonia / Organics)

Limitations of Traditional Cooling Water Treatment

Inhibitors & Blowdown

Limits of Traditional Cooling Water Treatment

<u>Limit</u>	Impact	Control Mechanisms
1. Ca/Mg	Scale	Blowdown / Inhibitor / Acid
2. Silica	Scale	Blowdown / Inhibitor
3. TDS	Corrosion	Blowdown / Inhibitor
4. pH	Corrosion / Scale	Blowdown / Acid

Impact of Soft / DM Water on Traditional Corrosion Control

- Traditional corrosion inhibitors do not function effectively without calcium (soft water)
- Requires precise pH control to stabilize corrosion inhibitors and prevent deposition
- Use of chlorine / bromine biocides further increases soft water corrosiveness
- Organic inhibitors degrade with long retention time, must be blown down and replenished
- Requires blowdown / limits discharge reduction

Silica Corrosion Inhibition

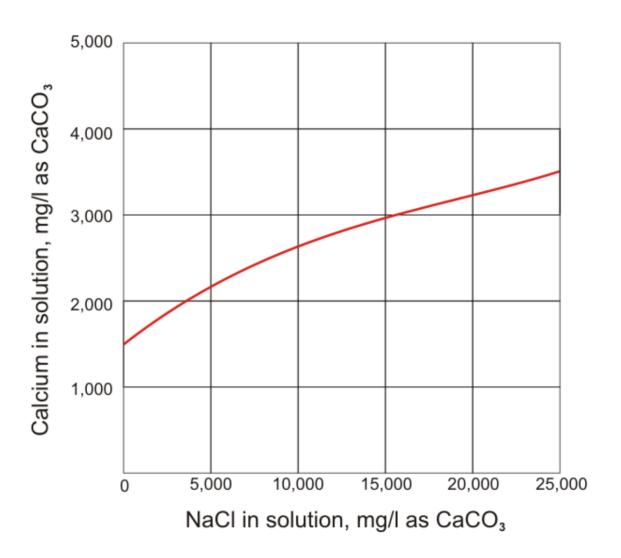
Advantages With Zero Liquid Discharge

Silica Corrosion Inhibition Chemistry

- Requires soft water (Soft or DM)
- Not affected by low or high TDS
- Not affected by ammonia, soluble organics
- Control chemistry provides ammonia striping
- Control chemistry eliminates biocide use
- Permits almost unlimited tower water (makeup) concentration to minimize discharge

How Silica Chemistry Works

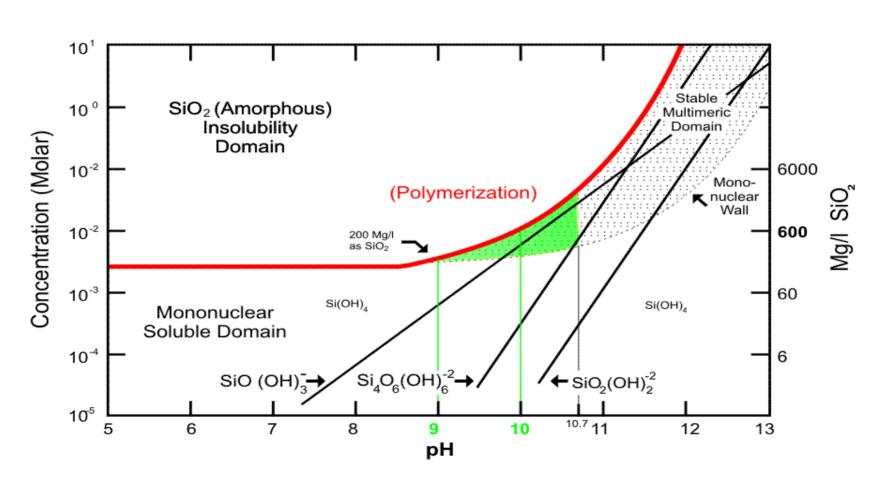
- Pre-treat to remove low solubility ions (Ca/Mg)
- Eliminates scale limitations in towers (100X)
- Other TDS very soluble (Evap Cooler 800X)
- Soluble silica polymerizes at > 200 mg/L
- Polymerized silica protects metals from TDS
- Excess silica forms amorphous colloids
- High TDS/pH prohibits bio & pathogen growth
- US Patents # 6,929,749; # 6,949,193; # 6,998,092;
 and # 7,122,148


Hard Water / Low TDS Chemistry Major Ion Relationships @ 2-5 COC

<u>Cations</u>		<u>Anions</u>
Ca ⁺² (60%)		C1
Mg^{+2} (30%)	SiO_2	SO_4^{-2}
Na ⁺ (10%)		CO_3^{-2}
		OH^{-}

Softened Water / High TDS Chemistry Major Ion Relationships @ 20-800 COC

<u>Cations</u>		<u>Anions</u>
-		C1
_	SiO_2	SO_4^{-2}
Na ⁺ (99%)		CO_3^{-2}
		OH^{-}


Calcium sulfate (gypsum) solubility increases with increasing sodium chloride.

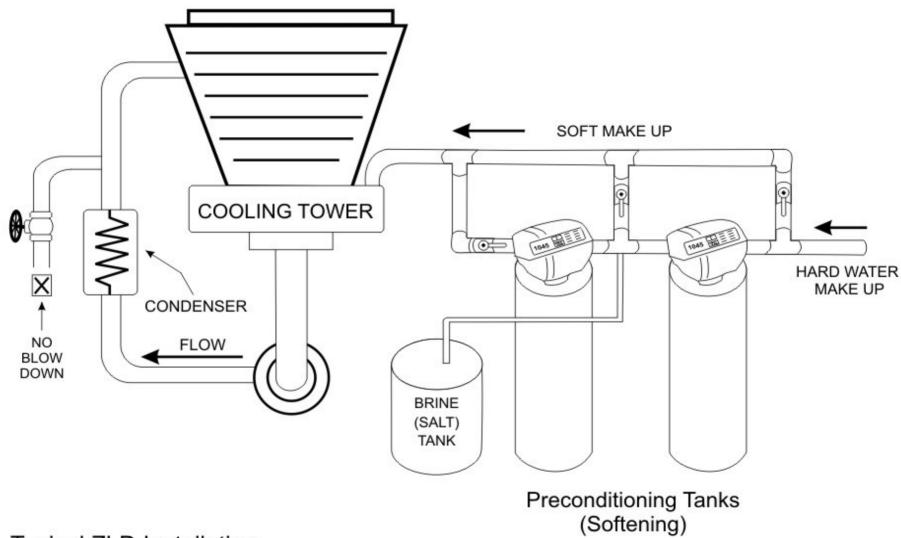
Water Conservation Technology International, Inc.

Relationship between Soluble, Insoluble and Polymerized Silica Species at Varying pH and Concentration (no polyvalent metals)

Species In Equilibrium with Amorphous Silica

New ZLD Technology

Prior ZLD Limitations


- Combinations of pre-treat and side stream treatment to remove TDS and precipitates
- Extensive capital and operational costs prohibitive unless mandated
- Corrosion, deposition and biological control still required
- Increased solids disposal from chemicals

New ZLD Technology

- Tower evaporation (waste heat) recovers water
- ZLD operation (High TDS) is very cost viable for either small or large systems
- "State of Art" corrosion & scale inhibition
- Effective operation at up to 200,000 mg/L TDS
- Reduces water use and discharge without risk of scale, corrosion and bio fouling
- Ideal for wastewater use / disposal.

Natural Biostatic Chemistry

- Elevated pH and TDS are naturally biostatic to bacteria, spores and viruses
- Hydrolysis of peptide chains as water pH is increased (used in waste treatment)
- Denaturing of proteins or enzymes by elevated TDS
- Report by Anderson Engineering

Typical ZLD Installation

ZLD HES Equipment Economy

- Low regenerate use / high efficiency softening (HES) design @ 4# / CF resin
- Typical regenerate usage cost of \$0.12 per 1000 gallons tower makeup
- Equipment and operating cost is 15% of conventional ZLD / TDS reduction systems
- Evaporative energy provided by process (cooling system) waste heat

Power / Industrial ZLD


(Site Discharge Processing)

Prior Power ZLD Approaches

- Required combination of chemical precipitation, reverse osmosis, evaporator and crystallizer stages to recover water and produce dry solids
- Capital cost can be 10% of power plant facility
- Operational costs 15% of power plant facility
- Complex operation, control and maintenance
- Still use organic chemicals and biocides
- Costs passed on in higher rates to consumers

Option A

Conventional Average Cycles of Concentration

Option B

Pre-Treated Make-up with Silica Inhibition Program

Other Anions
Present

Softened Water

Blowdown (High TDS)

Crystallizer

Solids

Landfill

Cooling Tower

Example 500 MW Power / ZLD Comparison

(Final Dry Solids Produced by Crystallizer)

Prior ZLD; CTBD to LS/IE/HERO or LS/BC	New ZLD; Tower /waste heat concentrates TDS		
Concentration of CTBD to 40-150,000 TDS	CTBD to crystallizer at 40-150,000 TDS		
Capital Cost	Capital Cost		
\$10-22 million	\$6-8 million		
Operating Cost	Operating Cost		
\$3.6 million	\$1.3 million		
Added energy use	Added energy use		
\$1.8 million	\$0.6 million		

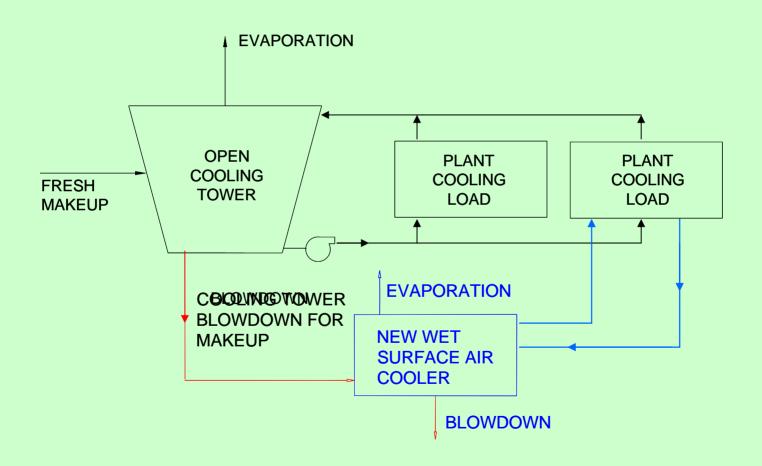
Option C

Raw Water Option with Evaporation Pond

Other Anions Present

Raw Water

Cooling Tower



Evaporation Pond

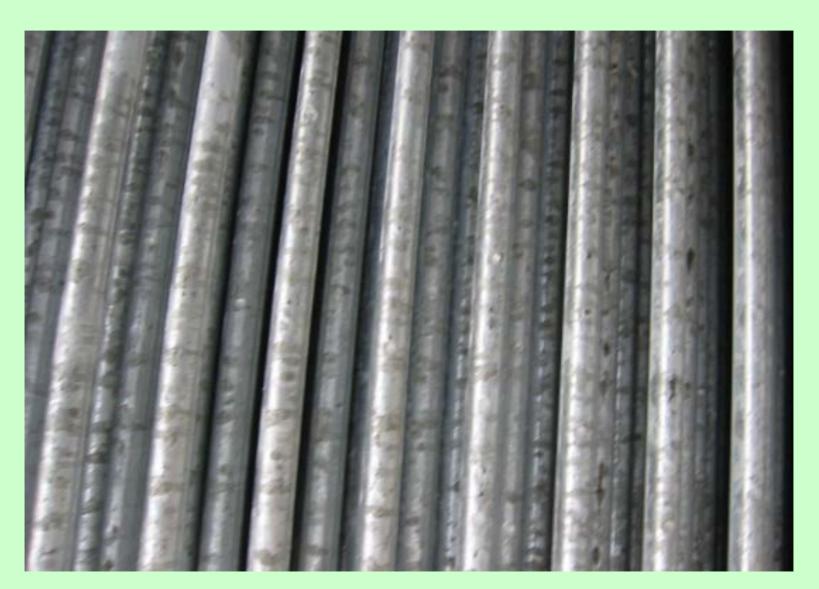
Cascaded ZLD Operation

Reduce Process Tower COC and Reduce Discharge

<u>De-Bottlenecking / Reducing Discharge</u> <u>in Existing Open Loop Systems</u>

Cascaded BD to Evap Cooler

- Small Evap Cooler provides 2nd stage evaporation for blowdown in ZLD operation
- Low heat flux metal exchange surface
- Low cost metal construction (mild steel)
- Evap Coolers can approach unlimited TDS concentrations with ZLD / silica chemistry
- Minimize water quality effects (chlorides) on critical exchanger metals (stainless)
- Reduce BD discharge & disposal cost


ZLD Case History

Steel Mill

Steel Mill Tower ZLD Water Chemistry

Cooling Tower and Soft Makeup Water Chemistry (COC) Ratios						
Sample / Tests	Tower	Filtered Tower Sample	Soft MU	COC		
TDS, mg/L (NaCl Myron L 6P)	146,000	146,000	251	582		
рН	10.07	10.07	7.58			
Copper, mg/L Cu	0.7	0.25	0.0015			
Iron, mg/L Fe	22.2	ND	ND			
Zinc, mg/L Zn	3.8	ND	ND			
Silica, mg/L SiO ₂	1,050	1,050	30	35		
Calcium, mg/L CaCO ₃	62	12.4	<0.1			
Magnesium, mg/L CaCO ₃	16	8.2	<0.1			
Phosphate, mg/L PO ₄	89	-	0.15	593		
Nitrate, mg/L NO ₃	2590	2590	4.5	575		
Sodium, mg/L Na	145,000	145,000	250	580		
Sulfate, mg/L SO ₄	10,260	10,260	18	570		
Chloride, mg/L NaCl	22,400	22,400	38	589		
Tot. Alkalinity, mg/L CaCO ₃	69,400	69,400	120	578		
(COC) = Concentration of Chemistry						

Steel Mill Tower #1 (24 months ZLD) Galvanized Tube Bundle / No White Rust

Steel Mill Tower Galvanized Coated Steel Coupon 60 Day Exposure

Mild Steel Coupons 60 Day Exposure VS Non-exposed

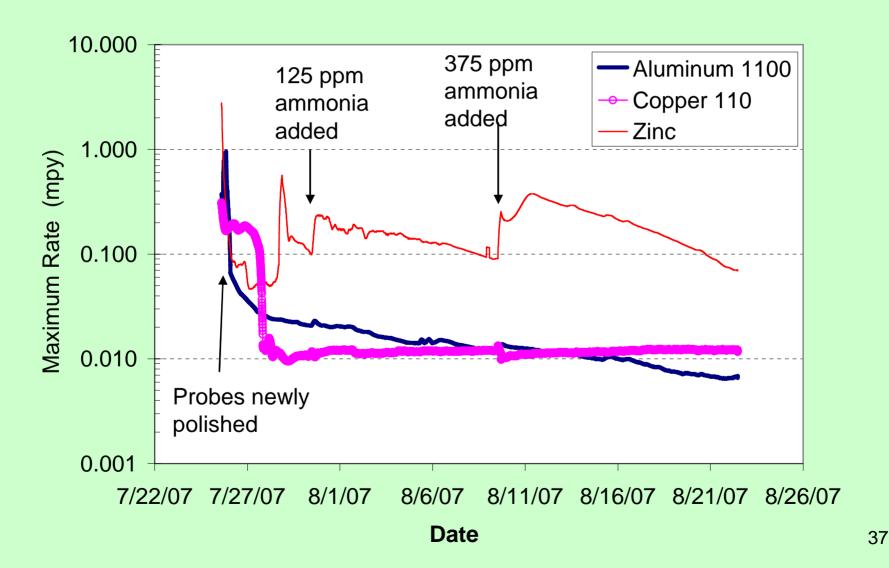
0.017 mpy #1652 VS 0.013 mpy #1664 (control)

Waste Water Use

Waste Water Makeup to Silica / ZLD Treatment

ZLD / Silica Expands Options

- Use reclaim, waste water, RO reject, brackish water sources for makeup
- Metals protected from corrosion by high TDS, ammonia, organics
- Excellent steel, copper and aluminum protection
- Expands metal selection / cost economy
- Mitigates micro-biological and pathogen proliferation, reduces biocide use
- Potential mineral or regenerate recovery (concentrate volume efficient processes)


Reclaim / Waste Water Makeup

- Must be low hardness
- Waste water sources require treatment to remove TSS & insoluble organics.
- Must be filtered to remove suspended solids that would foul softening processes used.
- TDS must be low enough to permit ion exchange softening.
- Ammonia and soluble organics do not have to be removed for ZLD / silica chemistry.

Inhibition of Copper Corrosion by Ammonia

- Research with 150,000 TDS / pH 10 / soft tower water inhibited by Silica / Azoles exposed to ammonia (200-400 mg/L).
- Study shows silica/azoles provide highly effective inhibition of copper corrosion.
- High pH increases effectiveness of azoles in silica treated high TDS / soft water.

ZLD / Silica treated Tower Water, with TTA Supplement: Ammonia Corrosion of Copper, Zinc & Aluminum Inhibited

Case History Using High Ammonia (Reclaim) Waste Water

- High ammonia (34 mg/L) "reclaim" makeup water to system with copper chiller and absorber tubes
- Ammonia < 1 mg/L at 20 tower COC
- Ammonia attack inhibited with copper corrosion at < 0.1 mpy.
- Micro-biological growth from ammonia and organics mitigated (10° Col / ml).

Tower Ammonia Stripping

In a waste stream, ammonium ions exist in equilibrium with ammonia.

$$NH4^++OH^-=NH3+H2O$$

- 1. Below pH 7, virtually all the ammonia is soluble ammonia ions.
- Above pH 12, virtually all the ammonia is present as a dissolved gas.
- 3. Between pH 7 and 12, both ammonium ions and dissolved gas exist together.
- 4. Percentage of dissolved gas increases with pH / temperature.
- 5. Elevated pH and temperature favor removal of ammonia from solution as the gas when water is scrubbed over a tower.

ZLD Cooling Tower using (California Title 22) Reclaim Waste Water as Makeup

ZLD Tower / Soft Reclaim Makeup Chemistry (COC) Ratios					
Sample / Tests	Tower	Soft MU	coc		
TDS, mg/L (NaCl Myron L 6P)	20,000	1100	18		
рН	9.7	6.7	NA		
Silica, mg/L SiO ₂	280	24	12		
Calcium, mg/L CaCO ₃	10	0.2	NA		
Magnesium, mg/L CaCO ₃	4	0.1	NA		
Sulfate, mg/L SO ₄	2300	127	18		
Chloride, mg/L NaCl	3700	214	17		
Tot. Alkalinity, mg/L CaCO ₃	3800	192	20		
Ammonia, mg/L NH ₄	0.5	34	NA		
Total Phosphate, mg/L PO ₄	12	0.6	20		
TTA, mg/L as Tolytriazole	50	NA	NA		
(COC) = Concentration of Chemistry					

ZLD Cooling Tower Corrosion Test Data Reclaim Water Makeup

CORRATOR, COUPON & CMAS CORROSION TEST DATA						
Specimen Type	Mild Steel	Copper				
Test location	Tower Loop	Tower loop				
Corrosion Rate (mpy)	< 0.2	< 0.1				

ZLD / Silica Program Summary

- No scale threat with "ZLD" operation
- Negligible corrosion at extreme high TDS
- Use reclaim or waste water makeup
- Ammonia and organics stripped by process
- Copper protected from ammonia
- Mitigates biological and pathogen growth
- Simple control chemistry
- Reduce water use and discharge cost

Questions?

Water Conservation Alternatives

Zero Liquid Discharge

ZLD / Silica Technology For Water Conservation

- ZLD reduces 2nd highest water use 20-40%.
- Reclaim water use cost is 30% of potable water.
- Blowdown and pH control systems not required.
- Chemical storage and feed systems eliminated.
- Reduced discharge volume and toxicant load.
- HES removal of only scaling ions (Ca & Mg) is highly cost and water use (waste) efficient.

Tower Discharge Reduction Alternatives TDS Impact (recycle or makeup)

- Traditional ion exchange TDS removal (DI) regeneration wastage is 8-10% of processed MU flow. Total discharged TDS from regeneration waste is increased 3X.
- Reverse osmosis wastage is 20-40% of processed MU flow (~BD). TDS discharge is increased 2X when pre-softening and pH increase are used to increase water recovery (10% wastage, HERO).

Cooling Tower Discharge Volume Reduction With HES

- High efficiency softening (HES) of tower
 MU permits discharge volume reduction.
- No additional energy cost as cooling tower evaporates water with waste heat.
- HES regeneration water wastage is < 2% of processed flow.
- HES regeneration produces less TDS than low cycle BD / MU traditional treatment.

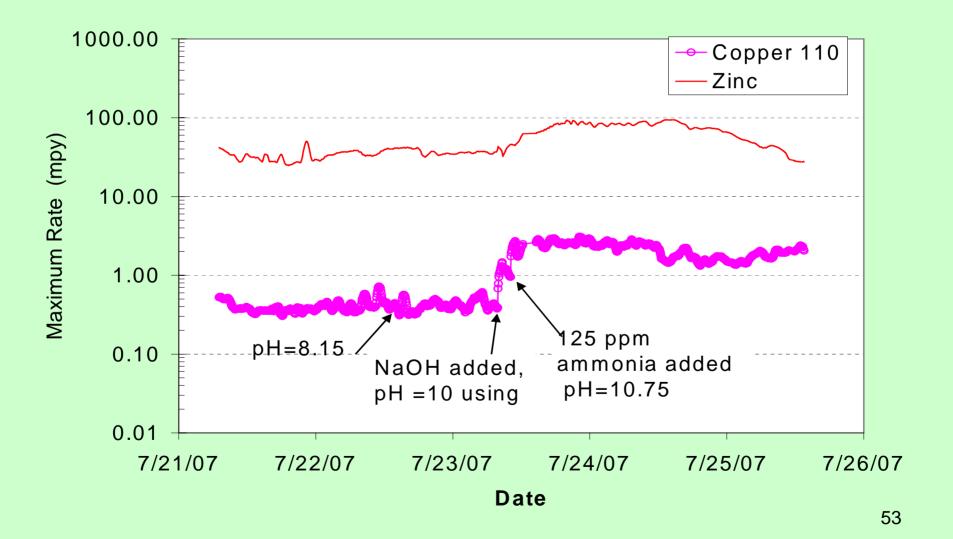
Alternative Tower Discharge Reduction Costs

- Capital cost for HES is < 15% of cost for DI or RO approaches per unit of MU water recovered (example, \$12,000 versus \$80,000 for 40 GPM).
- Operating cost for HES is < 20% of cost for DI or RO (energy, pre-treatment, regenerate use) approaches per unit of water recovered.
- CT BD recycle treatment requires equivalent capital and operating cost (smaller volume / higher TDS), plus filtration and added TDS solids disposal.
- These alternatives still require use/cost of traditional CT inhibitors & biocides.

Drift Permitting

- Reducing CT discharge volume results in higher TDS concentration in tower water.
- Permit applications use cooling tower drift control design data from manufacturer.
- Recent permits use 5% of TDS value for PM 10 per Reisman & Frisbie Study.
- Use of these two factors relegate most tower PM to < 5 tons/Year, which are not regulated in US.

WCTI Licensee Services

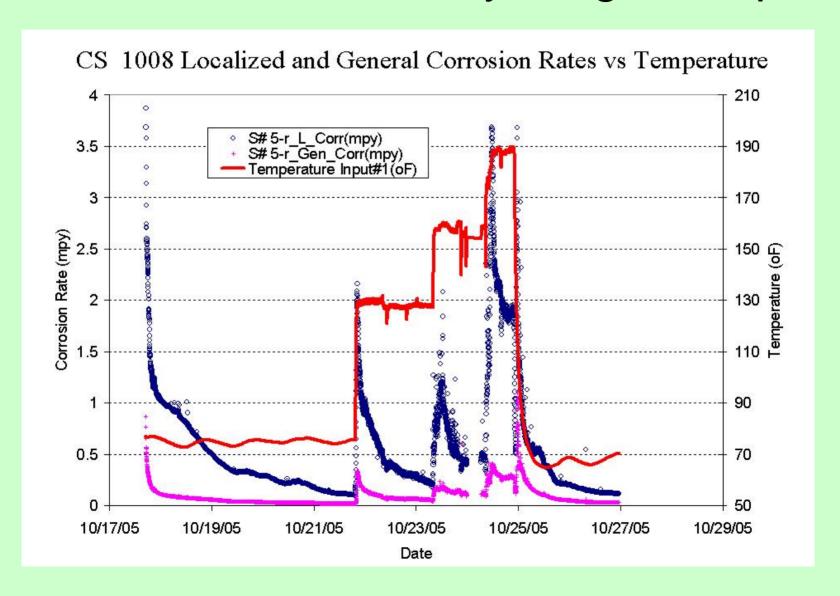

- Treatment chemistry operating control standards and transition
- Equipment design and installation support
- Equipment performance certification
- Equipment operational review & support
- Technical support to licensee
- R&D updates and reports to licensees

Ongoing Research & Development Technical Association Review

- NACE
- IWC
- CTI
- AWT
- CONRAD
- AIST
- AWWA
- ASHRAE
- ACS/GCE

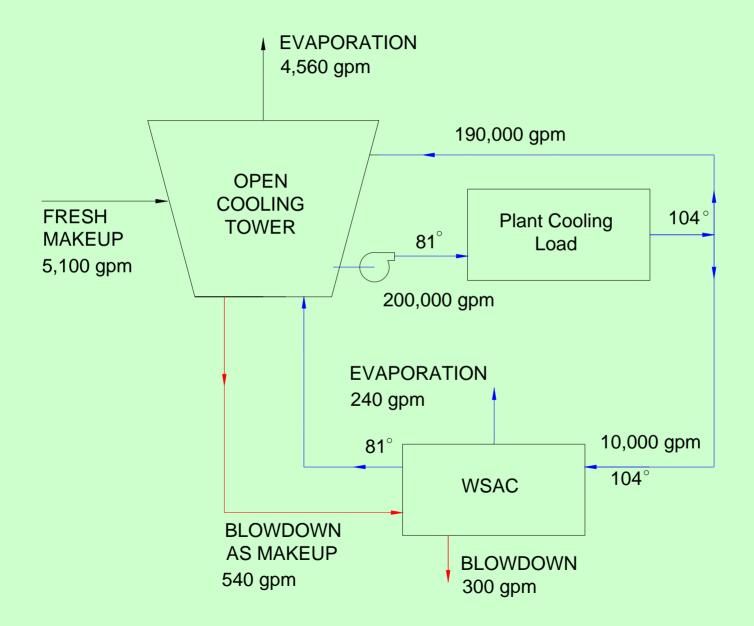
- Water Conservation
- Sustainable Environment
- R&D Studies
- Technical Exchange
- Symposia Papers
- Reports & Journals
- Pre-treat R&D
- Testing Standards
- Green Chemistry

15% NaCl solution with pH adjusted, no Inhibitors Ammonia Effect on Corrosion of Copper and Zinc


High Temperature Corrosion Inhibition Studies

High Temperature Corrosion Inhibition Studies

- Used real time coupled multielectrode array corrosion probes
- Probes measured peak localized and general corrosion rates
- Test water chemistry:
 - 50,000 TDS / conductivity
 - 450 ppm silica
 - 9000 ppm chloride
- Temperatures:
 - 77° F; 130° F; 160° F; 190° F
 (25° C; 54° C; 71° C; 88° C)
- Metals:
 - CS1008; 316L SS; AL1100;
 Cu 1100; Zn


Silica Inhibited Study / High Temp

The Effect of Silica and Temperature on Corrosion Rates in High (50,000 mg/L) TDS Waters

Metals	Test Solution	٥F	° C	General (mpy)	Max Loc (mpy)
CS 1008	Sea Salt	77	25	-	60
CS 1008	Tower / Silica	77	25	0.02	0.1
CS 1008	Tower / Silica	130	55	0.1	0.2
CS 1008	Tower / Silica	160	71	0.2	0.4
CS 1008	Tower / Silica	190	88	0.2	1.9
SS 316 L	Sea Salt	77	25	-	0.04
SS 316 L	Tower / Silica	77	25	< 0.002	< 0.005
SS 316 L	Tower / Silica	130	55	< 0.01	< 0.01
SS 316 L	Tower / Silica	160	71	< 0.01	< 0.01
SS 316 L	Tower / Silica	190	88	< 0.01	0.013
AL 1100	Sea Salt	77	25	-	20
AL 1100	Tower / Silica	77	25	< 0.05	< 0.1
AL 1100	Tower / Silica	130	55	0.002	0.009
AL 1100	Tower / Silica	160	71	< 0.05	0.2
AL 1100	Tower / Silica	190	88	< 0.06	0.37
Zn	Sea Salt	77	25	8	80
Zn	Tower / Silica	77	25	< 0.05	< 0.01
Zn	Tower / Silica	130	55	< 0.2	0.4
Zn	Tower / Silica	160	71	-	2.0
CU 110	Sea Salt	77	25	-	0.4
CU 110	Tower / Silica	77	25	< 0.05	< 0.2
CU 110	Tower / Silica	130	55	< 1.0	3.0
CU 110	Tower / Silica	160	71	-	4.0

Fresh Water Reduction / Discharge Reduction

